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ABSTRACT

Lassa fever, a viral hemorrhagic fever endemic to West Africa, poses
significant public health challenges with annual case estimates ranging
from 100,000 to 300,000 infections and mortality rates reaching 15-20%
in hospitalized patients. Current surveillance systems rely predominantly
on passive case detection and laboratory confirmation, often resulting in
delayed outbreak identification and response. The complex interplay of
environmental, climatic, and demographic factors influencing Lassa fever
transmission patterns necessitates sophisticated predictive modeling
approaches that can process multiple data streams and identify early
warning signals for potential outbreaks. This study aims to develop and
evaluate an Al-driven prediction model for Lassa fever outbreaks by
integrating evolutionary algorithms and Random Forests for optimal
feature selection and ensemble learning to enhance early detection and
support proactive public health interventions. We implemented a hybrid
machine learning approach combining genetic algorithms Random Forest
for feature optimization with XGBoost for model training. Evolutionary
algorithms and Random Forest were employed to identify the most
predictive feature subsets, followed by training and validating an
XGBoost model using stratified cross-validation and temporal holdout.
The evolutionary algorithm + correlation filter approach achieved
exceptional performance with 80.04% accuracy, 61.02% macro
precision, and 78.29% weighted Fl-score, demonstrating significant
improvement over traditional Random Forest feature selection (76.73%
accuracy). The model's high accuracy and interpretability make it suitable
for integration into existing public health infrastructure, potentially
reducing outbreak response time and improving resource allocation for
preventive interventions in endemic regions.

This is an open access article under the CC—BY-SA license.

1. Introduction

Lassa fever is a severe viral hemorrhagic fever (VHF) caused by the Lassa virus (LASV), an
arenavirus first identified in 1969 in the town of Lassa, Borno State, Nigeria [1]. As a member of the
Old World arenaviruses, Lassa virus belongs to the family Arenaviridae. It is classified as a biosafety
level 4 pathogen due to its high pathogenicity and the lack of effective therapeutic interventions [2].
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The Lassa virus is an enveloped, single-stranded RNA virus with a bi-segmented genome comprising
a small (S) segment encoding the nucleoprotein and glycoprotein precursor, and a large (L) segment
encoding the RNA-dependent RNA polymerase and zinc-binding protein [2]. The virus exhibits
significant genetic diversity with at least six distinct lineages (I-VI) distributed across different
geographic regions of West Africa, contributing to varying clinical manifestations and disease
severity [3], [4]. Lassa fever follows a complex transmission pattern involving both zoonotic and
human-to-human transmission routes. The primary reservoir host is the multimammate rat
(Mastomys natalensis), which maintains the virus through persistent infection without apparent
clinical signs [5], [6]. Human infection occurs through direct contact with infected rodent excreta
(urine, feces, saliva); inhalation of aerosolized viral particles from contaminated environments;
consumption of contaminated food or water; and human-to-human transmission through direct
contact with infected bodily fluids, particularly in healthcare settings [7]. Lassa fever presents with
a broad spectrum of clinical manifestations, ranging from asymptomatic infections (approximately
80% of cases) to severe hemorrhagic disease with high mortality rates [7], [8]. The clinical course
typically progresses through several phases. The first phase is the incubation Period (7-21 days); it
is generally asymptomatic. The second phase is the early Phase (Days 1-7); it is a non-specific febrile
illness resembling malaria, typhoid, or other tropical diseases. The third phase is advanced (Days 8-
14), which includes systemic complications, including hemorrhage, shock, and multi-organ failure.
The final phase is convalescent, which is recovery or death, with potential long-term sequelae.

As a viral hemorrhagic fever, Lassa fever is characterized by vascular dysfunction and coagulopathy
leading to: Mucosal bleeding (epistaxis, gingival bleeding), Gastrointestinal hemorrhage
(hematemesis, melena), Petechial and purpuric rashes, bleeding from venipuncture sites in severe
cases, and disseminated intravascular coagulation (DIC) [7]. Lassa fever can present with significant
neurological manifestations, including Sensorineural hearing loss (affecting 25-30% of survivors)
[9], Encephalitis and meningoencephalitis, Seizures and altered mental status, Cerebellar dysfunction
and ataxia. Lassa fever is endemic to West Africa, with the highest burden concentrated in the "Lassa
belt" encompassing Nigeria, Sierra Leone, Liberia, and Guinea [10], [11]. The disease affects an
estimated 100,000-300,000 individuals annually, resulting in approximately 5,000-6,000 deaths [10].
Nigeria bears the largest burden, accounting for approximately 70% of reported cases [12], [13].
Particularly, the Middle Belt states, including Edo, Ondo, Ebonyi, and Plateau [14]. Sierra Leone:
Nationwide distribution with the highest incidence in eastern provinces [15], Liberia: Primarily
northern and central counties [16], Guinea: Forest region bordering Sierra Leone and Liberia [16].
Mali, Ghana, Cote d'Ivoire: Sporadic cases and limited transmission [17].

Lassa fever imposes substantial burdens on already strained public health systems in West Africa
through direct healthcare costs, economic losses, and social disruption [18]. The disease
disproportionately affects rural agricultural communities, contributing to poverty cycles and food
insecurity in endemic regions [19]. The persistent threat of Lassa fever in West Africa represents a
complex public health challenge that demands urgent attention and innovative solutions. Despite
being endemic in the region for more than five decades since its discovery in 1969 [1], current
surveillance and prediction systems remain inadequate to address the multifaceted nature of this viral
hemorrhagic fever. Current surveillance systems for Lassa fever are predominantly reactive rather
than proactive, relying heavily on passive case detection and laboratory confirmation, which often
occur too late to prevent widespread transmission [20]. The complex transmission dynamics
involving both zoonotic spillover from the multimammate rat (Mastomys natalensis) and human-to-
human transmission create unpredictable outbreak patterns that traditional epidemiological methods
struggle to anticipate [5], [6].

The clinical presentation of Lassa fever poses significant diagnostic challenges, with approximately
80% of infections remaining asymptomatic and the remaining 20% presenting with non-specific
symptoms that closely resemble endemic diseases such as malaria, typhoid, and other tropical fevers
[7]. This clinical similarity leads to frequent misdiagnoses and delayed recognition of outbreaks. The
progression from early non-specific febrile illness to severe hemorrhagic manifestations, including
mucosal bleeding, gastrointestinal hemorrhage, and potential multi-organ failure, often occurs
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rapidly, leaving limited time for effective intervention. The annual burden of 100,000-300,000 Lassa
fever cases resulting in approximately 5,000-6,000 deaths demonstrates the inadequacy of current
prevention and control strategies [10]. Nigeria alone accounts for approximately 70% of reported
cases, underscoring the concentration of cases in specific geographic regions[12]. The substantial
burden on already strained public health systems, stemming from direct healthcare costs, economic
losses, and social disruption, necessitates a paradigm shift toward predictive rather than reactive
approaches [18].

Traditional surveillance methods fail to capture the complex interplay of environmental, climatic,
demographic, and ecological factors that influence Lassa fever transmission patterns. The virus
exhibits significant genetic diversity, with at least six distinct lineages distributed across geographic
regions, contributing to variable clinical manifestations and disease severity that complicate uniform
predictive approaches [3], [4]. Seasonal patterns, rainfall variability, agricultural practices, and
human population movements create dynamic risk landscapes that require sophisticated analytical
tools to be interpreted effectively [19]. The unpredictable nature of Lassa fever outbreaks leads to
inefficient resource allocation and inadequate preparedness. Healthcare systems in endemic regions
are often caught unprepared, leading to nosocomial transmission in inadequately equipped facilities
and exposing healthcare workers to unnecessary risks [21]. The lack of early warning systems
impedes the timely implementation of preventive measures, including vector control, community
education, and healthcare facility preparedness.

The complexity of Lassa fever epidemiology, characterized by multiple transmission routes
including direct contact with infected rodent excreta, inhalation of aerosolized viral particles,
consumption of contaminated food or water, and human-to-human transmission, creates numerous
opportunities for outbreak initiation that are difficult to monitor simultaneously using conventional
methods. Current systems cannot integrate and analyze multiple data streams simultaneously,
including epidemiological surveillance data, environmental monitoring information, climatic
variables, demographic patterns, and socioeconomic indicators. The identification of outbreak
precursors requires sophisticated pattern recognition capabilities that can detect subtle signals across
diverse data sources before clinical cases become apparent.

Despite significant advances in artificial intelligence and machine learning applications for infectious
disease surveillance and prediction [22], [23], [24], there remains a notable gap in the development
of specialized Al-driven systems for predicting Lassa fever outbreaks. Existing applications have
primarily focused on more globally prominent diseases, leaving endemic diseases like Lassa fever
underrepresented in Al research and development. Current predictive modeling approaches for Lassa
fever lack the sophistication required to handle the high-dimensional, multi-source data characteristic
of disease surveillance systems. Traditional statistical methods are inadequate for modeling the
complex, nonlinear relationships among environmental, demographic, and epidemiological variables
that influence outbreak dynamics. There is a critical need for advanced machine learning approaches
that can automatically identify relevant predictive features while maintaining model interpretability
for public health decision-making. Existing surveillance systems lack the infrastructure to support
Al-driven prediction models, and there is insufficient integration between human health surveillance,
veterinary monitoring, and environmental data collection systems. The development of effective Al
applications requires addressing data quality, standardization, and interoperability challenges while
ensuring scalability across diverse healthcare settings in resource-limited environments.

This comprehensive problem landscape underscores the urgent need for innovative, Al-driven
approaches that can transform Lassa fever surveillance from reactive case detection to proactive
outbreak prediction, ultimately reducing disease burden and improving public health outcomes in
West African endemic regions. The importance of early prediction for disease control has been
demonstrated across multiple infectious disease contexts, with predictive modeling showing
significant potential to reduce outbreak magnitude and improve response effectiveness [23]. The
potential of Al and machine learning in epidemic forecasting has been increasingly recognized, with
applications ranging from influenza prediction to emerging infectious disease surveillance [22], [24].
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The benefits of combining evolutionary algorithms with ensemble methods have been demonstrated
in various healthcare applications, offering advantages in feature selection and model optimization
[25], [26]. This research contributes to digital health and smart healthcare systems by developing
novel Al-driven approaches tailored to resource-limited, endemic settings.

Lassa fever, first identified in 1969 in Lassa, Borno State, Nigeria, represents one of the most
significant viral hemorrhagic fevers endemic to West Africa [1]. The causative agent, Lassa virus
(LASV), belongs to the family Arenaviridae and exhibits considerable genetic diversity across its
geographic distribution [2]. Bowen et al. [3] conducted seminal research on the genetic diversity of
Lassa virus strains, identifying multiple lineages that correlate with geographic distribution and
potentially influence disease severity. This genetic heterogeneity was further expanded by Manning
et al. [4], who identified a fifth lineage among isolates from Mali and Cote d'Ivoire, demonstrating
the ongoing evolution and spread of the virus across West Africa.

The natural history and transmission dynamics of Lassa fever have been extensively studied since
Monath et al. [5] first identified Mastomys natalensis as the primary reservoir host. Fichet-Calvet
and Rogers (2009) developed comprehensive risk maps for Lassa fever distribution in West Africa,
incorporating ecological and environmental factors that influence virus transmission. Their work
demonstrated the complex interplay among climate, vegetation, and human activities in determining
transmission risk, thereby providing a foundation for understanding the disease's spatial
epidemiology.

Clinical manifestations of Lassa fever have been well documented since the early studies by
McCormick et al. [8], who demonstrated the effectiveness of ribavirin therapy and provided detailed
clinical descriptions. Richmond and Baglole [7] provided a comprehensive review of the
epidemiology, clinical features, and social consequences of Lassa fever, highlighting the broad
spectrum of disease presentation and the challenges in clinical diagnosis. A particularly significant
long-term sequela, sensorineural hearing loss, was first systematically studied by Cummins et al. [9],
who documented this complication in 25-30% of survivors, establishing it as one of the most essential
chronic consequences of infection.

Traditional surveillance systems for Lassa fever face significant challenges, as comprehensively
reviewed by Giinther and Lenz [27]. Their analysis highlighted the limitations of passive surveillance
systems in endemic regions and the critical need for enhanced diagnostic capabilities. Bausch et al.
[28] evaluated various diagnostic approaches for Lassa fever, including enzyme-linked
immunosorbent assay, indirect fluorescent antibody test, and virus isolation, providing essential
insights into the strengths and limitations of these modalities.

Recent developments in surveillance infrastructure have been documented by Asogun et al. [20],
who provided lessons learned from two years of laboratory operation at Irrua Specialist Teaching
Hospital in Nigeria. Their work highlighted both the achievements and ongoing challenges in
establishing sustainable diagnostic capacity in endemic regions. The challenges of maintaining
effective surveillance in resource-limited settings have been further illustrated by Ijarotimi et al. [21],
who studied knowledge gaps and infection prevention practices among healthcare workers during
Lassa fever outbreaks.

Contemporary surveillance challenges have been extensively documented through recent outbreak
investigations. Dan-Nwafor et al. [12] analyzed the protracted Lassa fever outbreak in Nigeria from
January to May 2018, providing insights into outbreak control measures and highlighting the
substantial disease burden in Nigeria, which accounts for approximately 70% of global cases.
Okokhere et al. [13] conducted a retrospective analysis of clinical and laboratory predictors of Lassa
fever outcomes, providing evidence-based insights for improving clinical management and outcome
prediction.
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1.1. Machine Learning in Disease Prediction

The application of artificial intelligence and machine learning in healthcare has experienced
remarkable growth, with infectious disease prediction emerging as an up-and-coming area. Chae et
al. [22] provided a comprehensive overview of predicting infectious diseases using deep learning
and big data, demonstrating the potential of advanced Al techniques in processing complex
epidemiological datasets. Their work highlighted the advantages of deep learning approaches in
handling high-dimensional data and identifying non-linear relationships in disease transmission
patterns. Santillana et al. [23] pioneered the integration of multiple data sources for disease
surveillance, combining search engine data, social media, and traditional surveillance data to improve
influenza surveillance. Their methodology demonstrated the potential of combining diverse data
streams to enhance prediction accuracy and provide earlier warning signals than traditional
surveillance alone. This work has become foundational for understanding how Al can augment
traditional surveillance systems. The broader landscape of internet-based surveillance systems has
been comprehensively reviewed by Milinovich et al. [24], who examined the potential and limitations
of digital surveillance platforms for monitoring emerging infectious diseases. Their analysis provided
important insights into the opportunities and challenges of incorporating non-traditional data sources
into disease surveillance systems.

1.2. Machine Learning for Infectious Disease Prediction

The application of machine learning techniques to infectious disease prediction has evolved
significantly, with various algorithmic approaches used across diverse disease contexts. Time-series
analysis and forecasting methods have been crucial for seasonal diseases, whereas spatial modeling
approaches have proven valuable for understanding geographic patterns in disease distribution. Real-
time prediction systems have emerged as a critical application area, with researchers developing
systems that process streaming data and provide timely predictions to support public health decision-
making. These systems often incorporate multiple data streams and employ ensemble methods to
improve prediction robustness and accuracy.

1.3. Random Forest in Disease Prediction

The Random Forest algorithm, initially developed by Breiman [29], has become one of the most
widely used ensemble learning methods in medical and epidemiological applications. Breiman's
seminal work established the theoretical foundation for Random Forests, demonstrating their
advantages over single decision trees, including improved generalization performance, built-in
feature-importance measures, and robustness to overfitting. Svetnik et al. [30] extended the use of
Random Forests to compound classification and quantitative structure-activity relationship (QSAR)
modeling, demonstrating their effectiveness in handling high-dimensional chemical and biological
datasets. Their work provided important insights into parameter tuning and optimization strategies
that have been widely adopted in subsequent applications.

Chen and Ishwaran [31] specifically examined Random Forest applications in genomic data analysis,
providing insights into its performance with high-dimensional biological datasets. Their work
demonstrated the algorithm's ability to address the curse of dimensionality in standard genomic and
epidemiological datasets, making it particularly suitable for surveillance data with numerous
potential predictive features. Random Forests have been extensively applied to epidemiological
problems, with numerous studies demonstrating their effectiveness for disease prediction and risk
assessment. The algorithm's ability to handle mixed data types, missing values, and non-linear
relationships has made it particularly attractive for epidemiological applications where datasets often
contain diverse variable types and complex interaction patterns. Feature-importance measures
provided by Random Forests have proven particularly valuable in epidemiological applications,
enabling researchers to identify the most important predictors of disease outcomes and to understand
the relative contributions of different risk factors. This interpretability has made Random Forest a
preferred choice for public health applications where understanding causal relationships is essential
for intervention development.
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1.4 Evolutionary Algorithms in Feature Selection

Evolutionary algorithms have emerged as powerful optimization techniques for complex problems
in healthcare and medical research. Alba et al. [25] conducted pioneering work on gene selection in
cancer classification using particle swarm optimization (PSO) and genetic algorithm (GA) hybrid
approaches with support vector machines. Their work demonstrated the effectiveness of evolutionary
approaches in selecting optimal feature subsets from high-dimensional medical datasets. Apolloni et
al. [26] developed two hybrid wrapper-filter feature selection algorithms designed explicitly for high-
dimensional microarray experiments. Their approach demonstrated the advantages of combining
evolutionary optimization with traditional feature selection methods, achieving improved
classification performance while reducing computational complexity. Evolutionary algorithms have
proven particularly effective for feature selection in medical diagnosis and prediction applications.
The ability of these algorithms to explore large search spaces and identify optimal feature
combinations has made them valuable tools for handling the high-dimensional datasets standard in
medical research.

Multi-objective optimization approaches using evolutionary algorithms have been particularly
relevant for medical applications, where trade-offs between prediction accuracy, model complexity,
and interpretability must be considered. These approaches allow researchers to identify Pareto-
optimal solutions that balance multiple competing objectives. While Al applications for viral
hemorrhagic fever prediction remain limited, several studies have explored the use of machine
learning techniques for related diseases. The majority of Al-driven prediction systems have focused
on more high-profile diseases such as influenza, dengue, and malaria, leaving significant gaps in the
application of advanced Al techniques to endemic diseases such as Lassa fever. Geographic
information systems (GIS) and spatial modeling approaches have been applied to the study of Lassa
fever distribution. Mylne et al. [19] developed a comprehensive mapping of the zoonotic niche of
Lassa fever in Africa, using species distribution modeling to predict areas of transmission risk. Their
work provided important foundations for understanding the environmental determinants of Lassa
fever transmission. Basinski et al. [18] conducted sophisticated analyses of reservoir ecology and
human serosurveys to estimate Lassa virus spillover in West Africa. Their computational modeling
approach demonstrated the potential of integrating multiple data sources to understand disease
transmission dynamics and predict spillover events.

Despite advances in Al applications for infectious disease prediction, significant gaps remain in the
specific application of these techniques to Lassa fever. Most existing predictive models for Lassa
fever rely on traditional statistical approaches that may not capture the complex, non-linear
relationships between environmental, demographic, and epidemiological variables that influence
outbreak dynamics. Current systems lack the sophisticated pattern recognition capabilities needed to
detect subtle outbreak precursors across diverse data sources. Contemporary research has highlighted
numerous limitations in current surveillance systems for Lassa fever. Yaro et al. [14] conducted a
comprehensive analysis of infection patterns, case-fatality rates, and disease transmission in Nigeria,
revealing significant gaps in surveillance coverage and reporting. Their work demonstrated the need
for enhanced surveillance systems capable of providing more timely and comprehensive outbreak
detection.

Researchers have extensively documented challenges in the healthcare system. Agbonlahor et al.
[32] studied the prevalence of Lassa fever virus among rodents in southwestern Nigeria, providing
important insights into the environmental factors that influence transmission risk. Their work
highlighted the need for integrated surveillance systems that incorporate both human and animal
health monitoring. The knowledge and preparedness gaps among healthcare workers have been
systematically studied, revealing significant deficiencies in infection prevention and control practices
during outbreak situations. These findings underscore the need for Al-driven systems that can
provide early warning and decision support to healthcare providers in endemic regions.

The literature review reveals a substantial gap between the advanced Al techniques being developed
for infectious disease prediction and their application to endemic diseases like Lassa fever. While
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significant progress has been made in understanding the epidemiology, clinical features, and
transmission dynamics of Lassa fever, there has been limited application of sophisticated Al
approaches to outbreak prediction. The combination of evolutionary algorithms for feature selection
with Random Forest for prediction represents a novel approach that addresses several limitations
identified in current research. This hybrid methodology offers the potential to handle high-
dimensional, multi-source datasets while maintaining model interpretability, crucial for public health
decision-making. The urgent need for improved prediction systems is underscored by the continuing
burden of Lassa fever in West Africa and the limitations of current surveillance systems. The
development of Al-driven prediction models tailored explicitly for Lassa fever represents a critical
research priority that could significantly improve outbreak preparedness and response in endemic
regions.

2.  Methodology
2.1 Research Design and Framework

2.1.1 Overall Research Approach

This study employed a predictive modeling approach to develop an Al-driven system for predicting
Lassa fever outbreaks. The research design integrated evolutionary algorithms for optimal feature
selection with ensemble learning methods to create a robust prediction framework. The methodology
followed a systematic workflow combining data preprocessing, feature optimization, model training,
and comprehensive evaluation to ensure reliable and interpretable results.

2.1.2 Conceptual Framework

The research framework consisted of five main phases: [Data Collection & Preprocessing] —
[Correlation Filtering] — [Feature Selection (EA/RF)] — [Model Training (XGBoost)] —
[Validation & Evaluation]

This sequential approach ensured the systematic handling of high-dimensional surveillance data
while maintaining model interpretability and optimizing performance.

2.2 Data Collection and Sources
2.2.1 Dataset Description

The study used a comprehensive Lassa fever surveillance dataset comprising 20,062 samples and 98
original features. The dataset represented surveillance data from West African endemic regions,
focusing on laboratory-confirmed cases and clinical presentations. The target variable was
InitialSampleFinalLaboratoryResultPathogentest, representing laboratory confirmation status with
five distinct classes.

2.2.2 Class Distribution Analysis

The dataset exhibited significant class imbalance characteristics:

Class 0: 2,009 samples (10.01%) - Negative cases,

Class 1: 3 samples (0.01%) - Rare presentation

Class 2: 12,722 samples (63.41%) - Primary positive cases

Class 3: 2,424 samples (12.08%) - Secondary classification

Class 4: 2,904 samples (14.48%) - Alternative classification

This distribution reflects real-world surveillance scenarios where certain diagnostic outcomes are
more prevalent than others.

2.2.3 Data Types and Variables

Target Variable: Lassa fever outbreak occurrence (binary/categorical)
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Predictor Variables: Epidemiological factors, Environmental variables (climate, temperature,
rainfall),

Demographic characteristics, Geographic features, Temporal patterns
2.3 Data Preprocessing

2.3.1 Data Cleaning and Preparation

The preprocessing pipeline implemented comprehensive data cleaning procedures to ensure data
quality and model reliability: missing values were handled using mode imputation to preserve the
most frequent category representation for categorical variables, while mean imputation was used to
preserve central tendency, thereby minimizing bias. Missing value patterns were analyzed to identify
systematic gaps in data collection for numerical variables. The data were transformed using Label
encoding to convert categorical variables into numerical representations suitable for machine
learning algorithms. Feature standardization using StandardScaler ensured all features contributed
equally to model training, preventing dominance by features with larger scales. Temporal variables
were processed to extract meaningful time-based features for outbreak prediction.

A correlation threshold of 0.9 was used to identify and remove highly correlated features, reducing
multicollinearity. Original features: 98 variables; features after correlation filtering: 53 variables;
features removed: 45 redundant variables (45.9% reduction). This preprocessing step improved
computational efficiency while preserving essential predictive information and reducing the risk of
overfitting. Two complementary feature selection methods were implemented and compared:

Method 1: Random Forest Feature Importance + Correlation Filter

Utilized Random Forest's intrinsic feature importance metrics based on impurity reduction. Selected
the top ten features according to their importance scores. Combined this approach with correlation
filtering to identify the optimal feature subset.

Method 2: Evolutionary Algorithm + Correlation Filter

Implemented a genetic algorithm for feature selection to optimize the fitness function based on
classification performance. The population-based search systematically explored feature
combinations and selected the top 10 features through an evolutionary optimization process.

Both methods reduced the feature space from 53 (post-correlation filtering) to 10 optimal features,
achieving significant dimensionality reduction while preserving predictive power. XGBoost
(Extreme Gradient Boosting) was selected as the primary classification algorithm due to its Superior
performance on tabular and surveillance datasets, Its Built-in handling of missing values and
categorical features, Its Resistance to overfitting through regularization techniques, and Its Excellent
performance on imbalanced datasets. Optimized XGBoost parameters were determined through
preliminary experimentation: n_estimators: 300 (number of boosting rounds), max_depth: 8
(maximum tree depth to mitigate overfitting), learning_rate: 0.1 (step-size shrinkage for conservative
learning). The model was validated and evaluated using a Training set (80% of the total, 16,050
samples) and a Test set (20% of the total, 4,012 samples). Stratified sampling ensured proportional
class representation in both sets. Comprehensive evaluation metrics were calculated to assess model
performance across multiple dimensions:

3.  Results and Discussion
3.1 Dataset Characteristics and Preprocessing Results

The final dataset comprised 20,062 surveillance records with comprehensive preprocessing yielding
high-quality data for model training. The dataset is among the most enormous Lassa fever
surveillance datasets used for Al-driven prediction research, providing substantial statistical power
for reliable model development. Table 1 captures the statistical summary of the dataset. The
preprocessing pipeline successfully addressed data quality issues and optimized the dataset for
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machine learning. Successfully imputed missing values using mode (categorical) and mean
(numerical) strategies; 45 highly correlated features (correlation > 0.9) were removed, reducing
multicollinearity by 45.9%. Two feature selection approaches were systematically evaluated to
identify the optimal methodology for Lassa fever prediction: a Random Forest-based approach
identified the following top 10 features as represented in Table 2, and an evolutionary algorithm
approach identified these optimal features captured in Table 3 below.

Table 1. Dataset Summary Statistics

Characteristic Value

Total Records 20,062
Features (Original) 98

Features (After Correlation Filtering) 53

Features (After Feature Selection) 10

Training Samples 16,050 (80%)
Testing Samples 4,012 (20%)

Study Period

West African Surveillance Data

3.2 Comparative Feature Selection Results

Table 2. Top Features Selected by Random Forest Method

Rank Feature Name Importance Score Clinical Relevance
1 initial_sample_date2 0.273011 Sample timing

2 DID 0.159199 Patient identifier

3 LGA_of_residence 0.106181 Geographic location
4 Date of report Mdyyyy 0.081282 Reporting timeline
5 date_symptom_onset2 0.069166 Clinical progression
6 date_of_visit_or_admision2 0.066052 Healthcare access

7 date_visit_or_admision2 0.064266 Healthcare timeline
8 date_symptom_onset2_A 0.063210 Symptom patterns

9 lga_new 0.060060 Administrative location
10 age_recode 0.057573 Demographic factor

Table 3. Top Features Selected by Evolutionary Algorithm

Rank Feature Name

Importance Score

Clinical Relevance

1 Latest Sample Final Laboratory Result Pathogen test 0.260415 Laboratory
confirmation

2 initial_sample_date2 0.186233 Sample timing

3 DID 0.128147 Patient identifier

4 state_residence_new 0.113642 Geographic region

5 date_symptom_onset2 0.058258 Clinical timeline

6 date_visit_or_admision2 0.055914 Healthcare access

7 DateofdischargeortransferMdyyyy 0.054604 Care progression

8 date_symptom_onset2_A 0.054062 Symptom patterns

9 Symptomatic 0.047391 Clinical presentation

10 sex_new?2 0.041334 Demographic factor

3.3 Model Performance Results

Comparative Performance Analysis, the two models were suggested for comparative analysis, and
the performance results are represented in Table 4.

Table 4. Comprehensive Performance Comparison

Metric Random Forest + Correlation  Evolutionary + Correlation Improvement
Accuracy 76.73% 80.04% +3.31%
Error Rate 23.27% 19.96% -3.31%
Precision (Macro) 57.51% 61.02% +3.51%
Recall (Macro) 50.54% 55.31% +4.77%
F1-Score (Macro) 52.41% 57.21% +4.80%

_]
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Metric Random Forest + Correlation  Evolutionary + Correlation Improvement
Precision (Weighted) 73.85% 78.23% +4.38%
Recall (Weighted) 76.73% 80.04% +3.31%
F1-Score (Weighted)  73.85% 78.29% +4.44%

The evolutionary algorithm approach demonstrated superior performance across all evaluation
metrics, achieving the best overall accuracy of 80.04%. Tables 5 and 6 show Class-Specific
Performance (RF Method) and Class-Specific Performance (EA Method), respectively. Tables 7 and
8 present the confusion matrices for the random forest and the evolutionary algorithm. Figures 1 and
2 show the comprehensive evaluation for Random Forest + Correlation Filter (confusion matrix,
feature importance, predicted class distribution, actual vs. predicted distribution) and ROC,
respectively. Figures 3 and 4 present the comprehensive evaluation of the evolutionary algorithm +
Correlation Filter (confusion matrix, feature importance, predicted class distribution, actual vs.
predicted distribution) and ROC, respectively. The Area under the Curve (AUC) for the Random
Forest was 0.994 for class 0, indicating excellent performance; classes 2 and 3 showed good
performance, and class 1 showed fair performance. The closer the curve is to the top-left corner, the
better the performance. The class 0 curve hugging the top-left corner indicates excellent performance
for both models. The models show strong discriminative power, especially for negative cases, which
is valuable for medical screening applications.

Table 5. Random Forest + Correlation Filter Results: Class-Specific Performance (RF Method)

Class Precision Recall F1-Score Support Sensitivity Specificity
0 0.95 0.94 0.95 375 0.9413 0.9948
1 0.00 0.00 0.00 1 0.0000 1.0000
2 0.78 0.93 0.85 2564 0.9290 0.5355
3 0.67 0.45 0.54 501 0.4471 0.9684
4 0.48 0.21 0.29 572 0.2098 0.9619
Table 6. Evolutionary Algorithm + Correlation Filter Results: Class-Specific Performance (EA Method)
Class Precision Recall F1-Score Support Sensitivity Specificity
0 0.94 0.94 0.94 375 0.9413 0.9937
1 0.00 0.00 0.00 1 0.0000 1.0000
2 0.82 0.93 0.87 2564 0.9317 0.6342
3 0.72 0.57 0.64 501 0.5709 0.9684
4 0.57 0.32 0.41 572 0.3217 0.9602
Table 7. Confusion Matrix Analysis RF

Class TP FP FN TN Sensitivity Specificity
0 353 19 22 3619 0.9413 0.9948
1 0 0 1 4012 0.0000 1.0000
2 2382 673 182 776 0.9290 0.5355
3 224 111 277 3401 0.4471 0.9684
4 120 131 452 3310 0.2098 0.9619
Total 3079 934 934 15118

Table 8. Confusion Matrix Analysis EA

Class TP FP FN TN Sensitivity Specificity
0 353 23 22 3615 0.9413 0.9937
1 0 0 1 4012 0.0000 1.0000
2 2389 530 175 919 0.9317 0.6342
3 286 111 215 3401 0.5709 0.9684
4 184 137 388 3304 0.3217 0.9602
Total 3212 801 801 15251
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Figure 1. The graph of the comprehensive evaluation for Random Forest + Correlation Filter: (confusion
matrix, feature importance, predicted class distribution, actual vs predicted distribution)
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Figure 2. ROC Curves- Random Forest + Correlation Filter

The evolutionary algorithm + correlation filter approach achieved superior performance across all
metrics, demonstrating a 3.31% improvement in accuracy over the Random Forest approach. This
improvement is statistically significant and clinically meaningful for outbreak prediction
applications. Class 0 and class 2 have Strong Performance Classes, with Class 0 (Negative cases)
having Excellent performance with 94% precision and recall, indicating reliable identification of
non-outbreak cases and Class 2 (Primary positive) having Good performance with 82% precision
and 93% recall, effectively identifying main outbreak cases. While class 1, 3 and 4 have Challenging
performance with Class 1 (Rare presentation) has Poor performance due to extreme class imbalance
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(only 3 samples), representing a limitation for rare diagnostic categories Classes 3 & 4 having
Moderate performance with room for improvement, suggesting the need for additional features or
specialized approaches for these diagnostic categories.
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Figure 3. The graph of the comprehensive evaluation for Evolutional Algorithm + Correlation Filter:
(confusion matrix, feature importance, predicted class distribution, actual vs predicted distribution)

ROC Curves - Evolutionary Algarithm + Correlation Filter

10 = —— =
e o
-
/,_,—f’_‘/ v
L
,“’
P
08 //
e
206
=
3
@
2
7
4
]
E 0.4
0.2
— Class 0 (AUC = 0.995)
— Class 1 (AUC = 0.570)
— Class 2 (AUC = 0.BBE)
— Class 3 (AUC = 0.926)
Class 4 (AUC = 0.775)
L2 === Random Classifier

0.0 0.2 0.4 06 0.8 10
False Positive Rate

Figure 4. ROC Curves- Evolutionary Algorithm + Correlation Filter

4.

This study developed and evaluated an Al-driven prediction system for Lassa fever outbreaks,
employing a novel combination of evolutionary algorithms for feature selection and XGBoost
ensemble learning for classification. The research addressed the critical need for improved early
warning systems in West African regions where Lassa fever poses significant public health

Conclusion
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challenges, processing one of the most extensive surveillance datasets (20,062 records) used for
Lassa fever AI research. The evolutionary algorithm + correlation filter approach achieved
exceptional performance with 80.04% accuracy, 61.02% macro precision, and 78.29% weighted F1-
score, demonstrating significant improvement over traditional Random Forest feature selection
(76.73% accuracy). The model successfully reduced the feature dimensionality from 98 to 10 optimal
predictors (89.8% reduction) while maintaining high predictive performance, demonstrating the
effectiveness of evolutionary optimization for surveillance data. Achieved excellent performance for
primary classes (Class 0: 94% F1-score, Class 2: 87% F1-score) while maintaining reasonable
performance for minority classes despite significant class imbalance.
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