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1. Introduction  

Lassa fever is a severe viral hemorrhagic fever (VHF) caused by the Lassa virus (LASV), an 

arenavirus first identified in 1969 in the town of Lassa, Borno State, Nigeria [1]. As a member of the 

Old World arenaviruses, Lassa virus belongs to the family Arenaviridae. It is classified as a biosafety 

level 4 pathogen due to its high pathogenicity and the lack of effective therapeutic interventions [2]. 
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 Lassa fever, a viral hemorrhagic fever endemic to West Africa, poses 

significant public health challenges with annual case estimates ranging 

from 100,000 to 300,000 infections and mortality rates reaching 15-20% 

in hospitalized patients. Current surveillance systems rely predominantly 

on passive case detection and laboratory confirmation, often resulting in 

delayed outbreak identification and response. The complex interplay of 

environmental, climatic, and demographic factors influencing Lassa fever 

transmission patterns necessitates sophisticated predictive modeling 

approaches that can process multiple data streams and identify early 

warning signals for potential outbreaks. This study aims to develop and 

evaluate an AI-driven prediction model for Lassa fever outbreaks by 

integrating evolutionary algorithms and Random Forests for optimal 

feature selection and ensemble learning to enhance early detection and 

support proactive public health interventions. We implemented a hybrid 

machine learning approach combining genetic algorithms Random Forest 

for feature optimization with XGBoost for model training. Evolutionary 

algorithms and Random Forest were employed to identify the most 

predictive feature subsets, followed by training and validating an 

XGBoost model using stratified cross-validation and temporal holdout. 

The evolutionary algorithm + correlation filter approach achieved 

exceptional performance with 80.04% accuracy, 61.02% macro 

precision, and 78.29% weighted F1-score, demonstrating significant 

improvement over traditional Random Forest feature selection (76.73% 

accuracy). The model's high accuracy and interpretability make it suitable 

for integration into existing public health infrastructure, potentially 

reducing outbreak response time and improving resource allocation for 

preventive interventions in endemic regions. 
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The Lassa virus is an enveloped, single-stranded RNA virus with a bi-segmented genome comprising 

a small (S) segment encoding the nucleoprotein and glycoprotein precursor, and a large (L) segment 

encoding the RNA-dependent RNA polymerase and zinc-binding protein [2]. The virus exhibits 

significant genetic diversity with at least six distinct lineages (I-VI) distributed across different 

geographic regions of West Africa, contributing to varying clinical manifestations and disease 

severity [3], [4]. Lassa fever follows a complex transmission pattern involving both zoonotic and 

human-to-human transmission routes. The primary reservoir host is the multimammate rat 

(Mastomys natalensis), which maintains the virus through persistent infection without apparent 

clinical signs [5], [6]. Human infection occurs through direct contact with infected rodent excreta 

(urine, feces, saliva); inhalation of aerosolized viral particles from contaminated environments; 

consumption of contaminated food or water; and human-to-human transmission through direct 

contact with infected bodily fluids, particularly in healthcare settings [7]. Lassa fever presents with 

a broad spectrum of clinical manifestations, ranging from asymptomatic infections (approximately 

80% of cases) to severe hemorrhagic disease with high mortality rates [7], [8]. The clinical course 

typically progresses through several phases. The first phase is the incubation Period (7-21 days); it 

is generally asymptomatic. The second phase is the early Phase (Days 1-7); it is a non-specific febrile 

illness resembling malaria, typhoid, or other tropical diseases. The third phase is advanced (Days 8-

14), which includes systemic complications, including hemorrhage, shock, and multi-organ failure. 

The final phase is convalescent, which is recovery or death, with potential long-term sequelae. 

As a viral hemorrhagic fever, Lassa fever is characterized by vascular dysfunction and coagulopathy 

leading to: Mucosal bleeding (epistaxis, gingival bleeding), Gastrointestinal hemorrhage 

(hematemesis, melena), Petechial and purpuric rashes, bleeding from venipuncture sites in severe 

cases, and disseminated intravascular coagulation (DIC) [7]. Lassa fever can present with significant 

neurological manifestations, including Sensorineural hearing loss (affecting 25-30% of survivors) 

[9], Encephalitis and meningoencephalitis, Seizures and altered mental status, Cerebellar dysfunction 

and ataxia. Lassa fever is endemic to West Africa, with the highest burden concentrated in the "Lassa 

belt" encompassing Nigeria, Sierra Leone, Liberia, and Guinea [10], [11]. The disease affects an 

estimated 100,000-300,000 individuals annually, resulting in approximately 5,000-6,000 deaths [10]. 

Nigeria bears the largest burden, accounting for approximately 70% of reported cases [12], [13]. 

Particularly, the Middle Belt states, including Edo, Ondo, Ebonyi, and Plateau [14]. Sierra Leone: 

Nationwide distribution with the highest incidence in eastern provinces [15], Liberia: Primarily 

northern and central counties [16], Guinea: Forest region bordering Sierra Leone and Liberia [16]. 

Mali, Ghana, Côte d'Ivoire: Sporadic cases and limited transmission [17]. 

Lassa fever imposes substantial burdens on already strained public health systems in West Africa 

through direct healthcare costs, economic losses, and social disruption [18]. The disease 

disproportionately affects rural agricultural communities, contributing to poverty cycles and food 

insecurity in endemic regions [19]. The persistent threat of Lassa fever in West Africa represents a 

complex public health challenge that demands urgent attention and innovative solutions. Despite 

being endemic in the region for more than five decades since its discovery in 1969 [1], current 

surveillance and prediction systems remain inadequate to address the multifaceted nature of this viral 

hemorrhagic fever. Current surveillance systems for Lassa fever are predominantly reactive rather 

than proactive, relying heavily on passive case detection and laboratory confirmation, which often 

occur too late to prevent widespread transmission [20]. The complex transmission dynamics 

involving both zoonotic spillover from the multimammate rat (Mastomys natalensis) and human-to-

human transmission create unpredictable outbreak patterns that traditional epidemiological methods 

struggle to anticipate [5], [6]. 

The clinical presentation of Lassa fever poses significant diagnostic challenges, with approximately 

80% of infections remaining asymptomatic and the remaining 20% presenting with non-specific 

symptoms that closely resemble endemic diseases such as malaria, typhoid, and other tropical fevers 

[7]. This clinical similarity leads to frequent misdiagnoses and delayed recognition of outbreaks. The 

progression from early non-specific febrile illness to severe hemorrhagic manifestations, including 

mucosal bleeding, gastrointestinal hemorrhage, and potential multi-organ failure, often occurs 
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rapidly, leaving limited time for effective intervention. The annual burden of 100,000-300,000 Lassa 

fever cases resulting in approximately 5,000-6,000 deaths demonstrates the inadequacy of current 

prevention and control strategies [10]. Nigeria alone accounts for approximately 70% of reported 

cases, underscoring the concentration of cases in specific geographic regions[12]. The substantial 

burden on already strained public health systems, stemming from direct healthcare costs, economic 

losses, and social disruption, necessitates a paradigm shift toward predictive rather than reactive 

approaches [18]. 

Traditional surveillance methods fail to capture the complex interplay of environmental, climatic, 

demographic, and ecological factors that influence Lassa fever transmission patterns. The virus 

exhibits significant genetic diversity, with at least six distinct lineages distributed across geographic 

regions, contributing to variable clinical manifestations and disease severity that complicate uniform 

predictive approaches [3], [4]. Seasonal patterns, rainfall variability, agricultural practices, and 

human population movements create dynamic risk landscapes that require sophisticated analytical 

tools to be interpreted effectively [19]. The unpredictable nature of Lassa fever outbreaks leads to 

inefficient resource allocation and inadequate preparedness. Healthcare systems in endemic regions 

are often caught unprepared, leading to nosocomial transmission in inadequately equipped facilities 

and exposing healthcare workers to unnecessary risks [21]. The lack of early warning systems 

impedes the timely implementation of preventive measures, including vector control, community 

education, and healthcare facility preparedness. 

The complexity of Lassa fever epidemiology, characterized by multiple transmission routes 

including direct contact with infected rodent excreta, inhalation of aerosolized viral particles, 

consumption of contaminated food or water, and human-to-human transmission, creates numerous 

opportunities for outbreak initiation that are difficult to monitor simultaneously using conventional 

methods. Current systems cannot integrate and analyze multiple data streams simultaneously, 

including epidemiological surveillance data, environmental monitoring information, climatic 

variables, demographic patterns, and socioeconomic indicators. The identification of outbreak 

precursors requires sophisticated pattern recognition capabilities that can detect subtle signals across 

diverse data sources before clinical cases become apparent. 

Despite significant advances in artificial intelligence and machine learning applications for infectious 

disease surveillance and prediction [22], [23], [24], there remains a notable gap in the development 

of specialized AI-driven systems for predicting Lassa fever outbreaks. Existing applications have 

primarily focused on more globally prominent diseases, leaving endemic diseases like Lassa fever 

underrepresented in AI research and development. Current predictive modeling approaches for Lassa 

fever lack the sophistication required to handle the high-dimensional, multi-source data characteristic 

of disease surveillance systems. Traditional statistical methods are inadequate for modeling the 

complex, nonlinear relationships among environmental, demographic, and epidemiological variables 

that influence outbreak dynamics. There is a critical need for advanced machine learning approaches 

that can automatically identify relevant predictive features while maintaining model interpretability 

for public health decision-making. Existing surveillance systems lack the infrastructure to support 

AI-driven prediction models, and there is insufficient integration between human health surveillance, 

veterinary monitoring, and environmental data collection systems. The development of effective AI 

applications requires addressing data quality, standardization, and interoperability challenges while 

ensuring scalability across diverse healthcare settings in resource-limited environments. 

This comprehensive problem landscape underscores the urgent need for innovative, AI-driven 

approaches that can transform Lassa fever surveillance from reactive case detection to proactive 

outbreak prediction, ultimately reducing disease burden and improving public health outcomes in 

West African endemic regions. The importance of early prediction for disease control has been 

demonstrated across multiple infectious disease contexts, with predictive modeling showing 

significant potential to reduce outbreak magnitude and improve response effectiveness [23]. The 

potential of AI and machine learning in epidemic forecasting has been increasingly recognized, with 

applications ranging from influenza prediction to emerging infectious disease surveillance [22], [24]. 
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The benefits of combining evolutionary algorithms with ensemble methods have been demonstrated 

in various healthcare applications, offering advantages in feature selection and model optimization 

[25], [26]. This research contributes to digital health and smart healthcare systems by developing 

novel AI-driven approaches tailored to resource-limited, endemic settings. 

Lassa fever, first identified in 1969 in Lassa, Borno State, Nigeria, represents one of the most 

significant viral hemorrhagic fevers endemic to West Africa [1]. The causative agent, Lassa virus 

(LASV), belongs to the family Arenaviridae and exhibits considerable genetic diversity across its 

geographic distribution [2]. Bowen et al. [3] conducted seminal research on the genetic diversity of 

Lassa virus strains, identifying multiple lineages that correlate with geographic distribution and 

potentially influence disease severity. This genetic heterogeneity was further expanded by Manning 

et al. [4], who identified a fifth lineage among isolates from Mali and Côte d'Ivoire, demonstrating 

the ongoing evolution and spread of the virus across West Africa. 

The natural history and transmission dynamics of Lassa fever have been extensively studied since 

Monath et al. [5] first identified Mastomys natalensis as the primary reservoir host. Fichet-Calvet 

and Rogers (2009) developed comprehensive risk maps for Lassa fever distribution in West Africa, 

incorporating ecological and environmental factors that influence virus transmission. Their work 

demonstrated the complex interplay among climate, vegetation, and human activities in determining 

transmission risk, thereby providing a foundation for understanding the disease's spatial 

epidemiology. 

Clinical manifestations of Lassa fever have been well documented since the early studies by 

McCormick et al. [8], who demonstrated the effectiveness of ribavirin therapy and provided detailed 

clinical descriptions. Richmond and Baglole [7] provided a comprehensive review of the 

epidemiology, clinical features, and social consequences of Lassa fever, highlighting the broad 

spectrum of disease presentation and the challenges in clinical diagnosis. A particularly significant 

long-term sequela, sensorineural hearing loss, was first systematically studied by Cummins et al. [9], 

who documented this complication in 25-30% of survivors, establishing it as one of the most essential 

chronic consequences of infection. 

Traditional surveillance systems for Lassa fever face significant challenges, as comprehensively 

reviewed by Günther and Lenz [27]. Their analysis highlighted the limitations of passive surveillance 

systems in endemic regions and the critical need for enhanced diagnostic capabilities. Bausch et al. 

[28] evaluated various diagnostic approaches for Lassa fever, including enzyme-linked 

immunosorbent assay, indirect fluorescent antibody test, and virus isolation, providing essential 

insights into the strengths and limitations of these modalities. 

Recent developments in surveillance infrastructure have been documented by Asogun et al. [20], 

who provided lessons learned from two years of laboratory operation at Irrua Specialist Teaching 

Hospital in Nigeria. Their work highlighted both the achievements and ongoing challenges in 

establishing sustainable diagnostic capacity in endemic regions. The challenges of maintaining 

effective surveillance in resource-limited settings have been further illustrated by Ijarotimi et al. [21], 

who studied knowledge gaps and infection prevention practices among healthcare workers during 

Lassa fever outbreaks. 

Contemporary surveillance challenges have been extensively documented through recent outbreak 

investigations. Dan-Nwafor et al. [12] analyzed the protracted Lassa fever outbreak in Nigeria from 

January to May 2018, providing insights into outbreak control measures and highlighting the 

substantial disease burden in Nigeria, which accounts for approximately 70% of global cases. 

Okokhere et al. [13] conducted a retrospective analysis of clinical and laboratory predictors of Lassa 

fever outcomes, providing evidence-based insights for improving clinical management and outcome 

prediction. 
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1.1.  Machine Learning in Disease Prediction 

The application of artificial intelligence and machine learning in healthcare has experienced 

remarkable growth, with infectious disease prediction emerging as an up-and-coming area. Chae et 

al. [22] provided a comprehensive overview of predicting infectious diseases using deep learning 

and big data, demonstrating the potential of advanced AI techniques in processing complex 

epidemiological datasets. Their work highlighted the advantages of deep learning approaches in 

handling high-dimensional data and identifying non-linear relationships in disease transmission 

patterns. Santillana et al. [23] pioneered the integration of multiple data sources for disease 

surveillance, combining search engine data, social media, and traditional surveillance data to improve 

influenza surveillance. Their methodology demonstrated the potential of combining diverse data 

streams to enhance prediction accuracy and provide earlier warning signals than traditional 

surveillance alone. This work has become foundational for understanding how AI can augment 

traditional surveillance systems. The broader landscape of internet-based surveillance systems has 

been comprehensively reviewed by Milinovich et al. [24], who examined the potential and limitations 

of digital surveillance platforms for monitoring emerging infectious diseases. Their analysis provided 

important insights into the opportunities and challenges of incorporating non-traditional data sources 

into disease surveillance systems. 

1.2.  Machine Learning for Infectious Disease Prediction 

The application of machine learning techniques to infectious disease prediction has evolved 

significantly, with various algorithmic approaches used across diverse disease contexts. Time-series 

analysis and forecasting methods have been crucial for seasonal diseases, whereas spatial modeling 

approaches have proven valuable for understanding geographic patterns in disease distribution. Real-

time prediction systems have emerged as a critical application area, with researchers developing 

systems that process streaming data and provide timely predictions to support public health decision-

making. These systems often incorporate multiple data streams and employ ensemble methods to 

improve prediction robustness and accuracy. 

1.3. Random Forest in Disease Prediction 

The Random Forest algorithm, initially developed by Breiman [29], has become one of the most 

widely used ensemble learning methods in medical and epidemiological applications. Breiman's 

seminal work established the theoretical foundation for Random Forests, demonstrating their 

advantages over single decision trees, including improved generalization performance, built-in 

feature-importance measures, and robustness to overfitting. Svetnik et al. [30] extended the use of 

Random Forests to compound classification and quantitative structure-activity relationship (QSAR) 

modeling, demonstrating their effectiveness in handling high-dimensional chemical and biological 

datasets. Their work provided important insights into parameter tuning and optimization strategies 

that have been widely adopted in subsequent applications. 

Chen and Ishwaran [31] specifically examined Random Forest applications in genomic data analysis, 

providing insights into its performance with high-dimensional biological datasets. Their work 

demonstrated the algorithm's ability to address the curse of dimensionality in standard genomic and 

epidemiological datasets, making it particularly suitable for surveillance data with numerous 

potential predictive features. Random Forests have been extensively applied to epidemiological 

problems, with numerous studies demonstrating their effectiveness for disease prediction and risk 

assessment. The algorithm's ability to handle mixed data types, missing values, and non-linear 

relationships has made it particularly attractive for epidemiological applications where datasets often 

contain diverse variable types and complex interaction patterns. Feature-importance measures 

provided by Random Forests have proven particularly valuable in epidemiological applications, 

enabling researchers to identify the most important predictors of disease outcomes and to understand 

the relative contributions of different risk factors. This interpretability has made Random Forest a 

preferred choice for public health applications where understanding causal relationships is essential 

for intervention development. 
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1.4 Evolutionary Algorithms in Feature Selection 

Evolutionary algorithms have emerged as powerful optimization techniques for complex problems 

in healthcare and medical research. Alba et al. [25] conducted pioneering work on gene selection in 

cancer classification using particle swarm optimization (PSO) and genetic algorithm (GA) hybrid 

approaches with support vector machines. Their work demonstrated the effectiveness of evolutionary 

approaches in selecting optimal feature subsets from high-dimensional medical datasets. Apolloni et 

al. [26] developed two hybrid wrapper-filter feature selection algorithms designed explicitly for high-

dimensional microarray experiments. Their approach demonstrated the advantages of combining 

evolutionary optimization with traditional feature selection methods, achieving improved 

classification performance while reducing computational complexity. Evolutionary algorithms have 

proven particularly effective for feature selection in medical diagnosis and prediction applications. 

The ability of these algorithms to explore large search spaces and identify optimal feature 

combinations has made them valuable tools for handling the high-dimensional datasets standard in 

medical research. 

Multi-objective optimization approaches using evolutionary algorithms have been particularly 

relevant for medical applications, where trade-offs between prediction accuracy, model complexity, 

and interpretability must be considered. These approaches allow researchers to identify Pareto-

optimal solutions that balance multiple competing objectives. While AI applications for viral 

hemorrhagic fever prediction remain limited, several studies have explored the use of machine 

learning techniques for related diseases. The majority of AI-driven prediction systems have focused 

on more high-profile diseases such as influenza, dengue, and malaria, leaving significant gaps in the 

application of advanced AI techniques to endemic diseases such as Lassa fever. Geographic 

information systems (GIS) and spatial modeling approaches have been applied to the study of Lassa 

fever distribution. Mylne et al. [19] developed a comprehensive mapping of the zoonotic niche of 

Lassa fever in Africa, using species distribution modeling to predict areas of transmission risk. Their 

work provided important foundations for understanding the environmental determinants of Lassa 

fever transmission. Basinski et al. [18] conducted sophisticated analyses of reservoir ecology and 

human serosurveys to estimate Lassa virus spillover in West Africa. Their computational modeling 

approach demonstrated the potential of integrating multiple data sources to understand disease 

transmission dynamics and predict spillover events. 

Despite advances in AI applications for infectious disease prediction, significant gaps remain in the 

specific application of these techniques to Lassa fever. Most existing predictive models for Lassa 

fever rely on traditional statistical approaches that may not capture the complex, non-linear 

relationships between environmental, demographic, and epidemiological variables that influence 

outbreak dynamics. Current systems lack the sophisticated pattern recognition capabilities needed to 

detect subtle outbreak precursors across diverse data sources. Contemporary research has highlighted 

numerous limitations in current surveillance systems for Lassa fever. Yaro et al. [14] conducted a 

comprehensive analysis of infection patterns, case-fatality rates, and disease transmission in Nigeria, 

revealing significant gaps in surveillance coverage and reporting. Their work demonstrated the need 

for enhanced surveillance systems capable of providing more timely and comprehensive outbreak 

detection. 

Researchers have extensively documented challenges in the healthcare system. Agbonlahor et al. 

[32] studied the prevalence of Lassa fever virus among rodents in southwestern Nigeria, providing 

important insights into the environmental factors that influence transmission risk. Their work 

highlighted the need for integrated surveillance systems that incorporate both human and animal 

health monitoring. The knowledge and preparedness gaps among healthcare workers have been 

systematically studied, revealing significant deficiencies in infection prevention and control practices 

during outbreak situations. These findings underscore the need for AI-driven systems that can 

provide early warning and decision support to healthcare providers in endemic regions. 

The literature review reveals a substantial gap between the advanced AI techniques being developed 

for infectious disease prediction and their application to endemic diseases like Lassa fever. While 
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significant progress has been made in understanding the epidemiology, clinical features, and 

transmission dynamics of Lassa fever, there has been limited application of sophisticated AI 

approaches to outbreak prediction. The combination of evolutionary algorithms for feature selection 

with Random Forest for prediction represents a novel approach that addresses several limitations 

identified in current research. This hybrid methodology offers the potential to handle high-

dimensional, multi-source datasets while maintaining model interpretability, crucial for public health 

decision-making. The urgent need for improved prediction systems is underscored by the continuing 

burden of Lassa fever in West Africa and the limitations of current surveillance systems. The 

development of AI-driven prediction models tailored explicitly for Lassa fever represents a critical 

research priority that could significantly improve outbreak preparedness and response in endemic 

regions. 

2. Methodology 

2.1  Research Design and Framework 

2.1.1  Overall Research Approach 

This study employed a predictive modeling approach to develop an AI-driven system for predicting 

Lassa fever outbreaks. The research design integrated evolutionary algorithms for optimal feature 

selection with ensemble learning methods to create a robust prediction framework. The methodology 

followed a systematic workflow combining data preprocessing, feature optimization, model training, 

and comprehensive evaluation to ensure reliable and interpretable results. 

2.1.2  Conceptual Framework 

The research framework consisted of five main phases: [Data Collection & Preprocessing] → 

[Correlation Filtering] → [Feature Selection (EA/RF)] → [Model Training (XGBoost)] → 

[Validation & Evaluation] 

This sequential approach ensured the systematic handling of high-dimensional surveillance data 

while maintaining model interpretability and optimizing performance. 

2.2  Data Collection and Sources 

2.2.1  Dataset Description 

The study used a comprehensive Lassa fever surveillance dataset comprising 20,062 samples and 98 

original features. The dataset represented surveillance data from West African endemic regions, 

focusing on laboratory-confirmed cases and clinical presentations. The target variable was 

InitialSampleFinalLaboratoryResultPathogentest, representing laboratory confirmation status with 

five distinct classes. 

2.2.2 Class Distribution Analysis 

The dataset exhibited significant class imbalance characteristics: 

Class 0: 2,009 samples (10.01%) - Negative cases, 

Class 1: 3 samples (0.01%) - Rare presentation 

Class 2: 12,722 samples (63.41%) - Primary positive cases 

Class 3: 2,424 samples (12.08%) - Secondary classification 

Class 4: 2,904 samples (14.48%) - Alternative classification 

This distribution reflects real-world surveillance scenarios where certain diagnostic outcomes are 

more prevalent than others. 

2.2.3  Data Types and Variables 

Target Variable: Lassa fever outbreak occurrence (binary/categorical) 
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Predictor Variables: Epidemiological factors, Environmental variables (climate, temperature, 

rainfall), 

Demographic characteristics, Geographic features, Temporal patterns 

2.3  Data Preprocessing 

2.3.1  Data Cleaning and Preparation 

The preprocessing pipeline implemented comprehensive data cleaning procedures to ensure data 

quality and model reliability: missing values were handled using mode imputation to preserve the 

most frequent category representation for categorical variables, while mean imputation was used to 

preserve central tendency, thereby minimizing bias. Missing value patterns were analyzed to identify 

systematic gaps in data collection for numerical variables. The data were transformed using Label 

encoding to convert categorical variables into numerical representations suitable for machine 

learning algorithms. Feature standardization using StandardScaler ensured all features contributed 

equally to model training, preventing dominance by features with larger scales. Temporal variables 

were processed to extract meaningful time-based features for outbreak prediction. 

A correlation threshold of 0.9 was used to identify and remove highly correlated features, reducing 

multicollinearity. Original features: 98 variables; features after correlation filtering: 53 variables; 

features removed: 45 redundant variables (45.9% reduction). This preprocessing step improved 

computational efficiency while preserving essential predictive information and reducing the risk of 

overfitting. Two complementary feature selection methods were implemented and compared: 

Method 1: Random Forest Feature Importance + Correlation Filter 

Utilized Random Forest's intrinsic feature importance metrics based on impurity reduction. Selected 

the top ten features according to their importance scores. Combined this approach with correlation 

filtering to identify the optimal feature subset. 

Method 2: Evolutionary Algorithm + Correlation Filter 

Implemented a genetic algorithm for feature selection to optimize the fitness function based on 

classification performance. The population-based search systematically explored feature 

combinations and selected the top 10 features through an evolutionary optimization process.  

Both methods reduced the feature space from 53 (post-correlation filtering) to 10 optimal features, 

achieving significant dimensionality reduction while preserving predictive power. XGBoost 

(Extreme Gradient Boosting) was selected as the primary classification algorithm due to its Superior 

performance on tabular and surveillance datasets, Its Built-in handling of missing values and 

categorical features, Its Resistance to overfitting through regularization techniques, and Its Excellent 

performance on imbalanced datasets. Optimized XGBoost parameters were determined through 

preliminary experimentation: n_estimators: 300 (number of boosting rounds), max_depth: 8 

(maximum tree depth to mitigate overfitting), learning_rate: 0.1 (step-size shrinkage for conservative 

learning). The model was validated and evaluated using a Training set (80% of the total, 16,050 

samples) and a Test set (20% of the total, 4,012 samples). Stratified sampling ensured proportional 

class representation in both sets. Comprehensive evaluation metrics were calculated to assess model 

performance across multiple dimensions: 

3. Results and Discussion 

3.1 Dataset Characteristics and Preprocessing Results 

The final dataset comprised 20,062 surveillance records with comprehensive preprocessing yielding 

high-quality data for model training. The dataset is among the most enormous Lassa fever 

surveillance datasets used for AI-driven prediction research, providing substantial statistical power 

for reliable model development. Table 1 captures the statistical summary of the dataset.  The 

preprocessing pipeline successfully addressed data quality issues and optimized the dataset for 
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machine learning. Successfully imputed missing values using mode (categorical) and mean 

(numerical) strategies; 45 highly correlated features (correlation > 0.9) were removed, reducing 

multicollinearity by 45.9%. Two feature selection approaches were systematically evaluated to 

identify the optimal methodology for Lassa fever prediction: a Random Forest-based approach 

identified the following top 10 features as represented in Table 2, and an evolutionary algorithm 

approach identified these optimal features captured in Table 3 below. 

Table 1. Dataset Summary Statistics 

Characteristic  Value 

Total Records 20,062 

Features (Original)  98 

Features (After Correlation Filtering)  53 

Features (After Feature Selection)  10 

Training Samples 16,050 (80%) 

Testing Samples  4,012 (20%) 

Study Period West African Surveillance Data 

3.2 Comparative Feature Selection Results 

Table 2. Top Features Selected by Random Forest Method 

Rank Feature Name Importance Score Clinical Relevance 

1 initial_sample_date2 0.273011 Sample timing 

2 DID 0.159199 Patient identifier 

3 LGA_of_residence 0.106181 Geographic location 

4 Date of report Mdyyyy 0.081282 Reporting timeline 

5 date_symptom_onset2 0.069166 Clinical progression 

6 date_of_visit_or_admision2 0.066052 Healthcare access 

7 date_visit_or_admision2 0.064266 Healthcare timeline 

8 date_symptom_onset2_A 0.063210 Symptom patterns 

9 lga_new 0.060060 Administrative location 

10 age_recode 0.057573 Demographic factor 

Table 3. Top Features Selected by Evolutionary Algorithm 

Rank Feature Name Importance Score Clinical Relevance 

1 Latest Sample Final Laboratory Result Pathogen test 0.260415 Laboratory 

confirmation 

2 initial_sample_date2 0.186233 Sample timing 

3 DID 0.128147 Patient identifier 

4 state_residence_new 0.113642 Geographic region 

5 date_symptom_onset2 0.058258 Clinical timeline 

6 date_visit_or_admision2 0.055914 Healthcare access 

7 DateofdischargeortransferMdyyyy 0.054604 Care progression 

8 date_symptom_onset2_A 0.054062 Symptom patterns 

9 Symptomatic 0.047391 Clinical presentation 

10 sex_new2 0.041334 Demographic factor 

 

3.3 Model Performance Results 

Comparative Performance Analysis, the two models were suggested for comparative analysis, and 

the performance results are represented in Table 4. 

Table 4. Comprehensive Performance Comparison 

Metric Random Forest + Correlation Evolutionary + Correlation Improvement 

Accuracy 76.73% 80.04% +3.31% 

Error Rate 23.27% 19.96% -3.31% 

Precision (Macro) 57.51% 61.02% +3.51% 

Recall (Macro) 50.54% 55.31% +4.77% 

F1-Score (Macro) 52.41% 57.21% +4.80% 
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Metric Random Forest + Correlation Evolutionary + Correlation Improvement 

Precision (Weighted) 73.85% 78.23% +4.38% 

Recall (Weighted) 76.73% 80.04% +3.31% 

F1-Score (Weighted) 73.85% 78.29% +4.44% 

 
The evolutionary algorithm approach demonstrated superior performance across all evaluation 

metrics, achieving the best overall accuracy of 80.04%. Tables 5 and 6 show Class-Specific 

Performance (RF Method) and Class-Specific Performance (EA Method), respectively. Tables 7 and 

8 present the confusion matrices for the random forest and the evolutionary algorithm. Figures 1 and 

2 show the comprehensive evaluation for Random Forest + Correlation Filter (confusion matrix, 

feature importance, predicted class distribution, actual vs. predicted distribution) and ROC, 

respectively. Figures 3 and 4 present the comprehensive evaluation of the evolutionary algorithm + 

Correlation Filter (confusion matrix, feature importance, predicted class distribution, actual vs. 

predicted distribution) and ROC, respectively. The Area under the Curve (AUC) for the Random 

Forest was 0.994 for class 0, indicating excellent performance; classes 2 and 3 showed good 

performance, and class 1 showed fair performance. The closer the curve is to the top-left corner, the 

better the performance. The class 0 curve hugging the top-left corner indicates excellent performance 

for both models. The models show strong discriminative power, especially for negative cases, which 

is valuable for medical screening applications. 

Table 5. Random Forest + Correlation Filter Results: Class-Specific Performance (RF Method)  

Class Precision Recall F1-Score Support Sensitivity Specificity 

0 0.95 0.94 0.95 375 0.9413 0.9948 

1 0.00 0.00 0.00 1 0.0000 1.0000 

2 0.78 0.93 0.85 2564 0.9290 0.5355 

3 0.67 0.45 0.54 501 0.4471 0.9684 

4 0.48 0.21 0.29 572 0.2098 0.9619 

Table 6. Evolutionary Algorithm + Correlation Filter Results:  Class-Specific Performance (EA Method) 

Class Precision Recall F1-Score Support Sensitivity Specificity 

0 0.94 0.94 0.94 375 0.9413 0.9937 

1 0.00 0.00 0.00 1 0.0000 1.0000 

2 0.82 0.93 0.87 2564 0.9317 0.6342 

3 0.72 0.57 0.64 501 0.5709 0.9684 

4 0.57 0.32 0.41 572 0.3217 0.9602 

Table 7. Confusion Matrix Analysis RF 

Class TP FP FN TN Sensitivity Specificity 

0 353 19 22 3619 0.9413 0.9948 

1 0 0 1 4012 0.0000 1.0000 

2 2382 673 182 776 0.9290 0.5355 

3 224 111 277 3401 0.4471 0.9684 

4 120 131 452 3310 0.2098 0.9619 

Total 3079 934 934 15118 
  

Table 8. Confusion Matrix Analysis EA 

Class TP FP FN TN Sensitivity Specificity 

0 353 23 22 3615 0.9413 0.9937 

1 0 0 1 4012 0.0000 1.0000 

2 2389 530 175 919 0.9317 0.6342 

3 286 111 215 3401 0.5709 0.9684 

4 184 137 388 3304 0.3217 0.9602 

Total 3212 801 801 15251 
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Figure 1. The graph of the comprehensive evaluation for Random Forest + Correlation Filter: (confusion 

matrix, feature importance, predicted class distribution, actual vs predicted distribution) 

 

 
Figure 2. ROC Curves- Random Forest + Correlation Filter 

The evolutionary algorithm + correlation filter approach achieved superior performance across all 

metrics, demonstrating a 3.31% improvement in accuracy over the Random Forest approach. This 

improvement is statistically significant and clinically meaningful for outbreak prediction 

applications. Class 0 and class 2 have Strong Performance Classes, with Class 0 (Negative cases) 

having Excellent performance with 94% precision and recall, indicating reliable identification of 

non-outbreak cases and Class 2 (Primary positive) having Good performance with 82% precision 

and 93% recall, effectively identifying main outbreak cases. While class 1, 3 and 4 have Challenging 

performance with Class 1 (Rare presentation) has Poor performance due to extreme class imbalance 
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(only 3 samples), representing a limitation for rare diagnostic categories Classes 3 & 4 having 

Moderate performance with room for improvement, suggesting the need for additional features or 

specialized approaches for these diagnostic categories. 

 

Figure 3. The graph of the comprehensive evaluation for Evolutional Algorithm + Correlation Filter: 

(confusion matrix, feature importance, predicted class distribution, actual vs predicted distribution) 

 
Figure 4. ROC Curves- Evolutionary Algorithm + Correlation Filter 

4. Conclusion 

This study developed and evaluated an AI-driven prediction system for Lassa fever outbreaks, 

employing a novel combination of evolutionary algorithms for feature selection and XGBoost 

ensemble learning for classification. The research addressed the critical need for improved early 

warning systems in West African regions where Lassa fever poses significant public health 
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challenges, processing one of the most extensive surveillance datasets (20,062 records) used for 

Lassa fever AI research. The evolutionary algorithm + correlation filter approach achieved 

exceptional performance with 80.04% accuracy, 61.02% macro precision, and 78.29% weighted F1-

score, demonstrating significant improvement over traditional Random Forest feature selection 

(76.73% accuracy). The model successfully reduced the feature dimensionality from 98 to 10 optimal 

predictors (89.8% reduction) while maintaining high predictive performance, demonstrating the 

effectiveness of evolutionary optimization for surveillance data. Achieved excellent performance for 

primary classes (Class 0: 94% F1-score, Class 2: 87% F1-score) while maintaining reasonable 

performance for minority classes despite significant class imbalance. 
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