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ABSTRACT

The study investigated the adoption of Al in the banking sector using a
PCA-based k-means clustering method, drawing on data from the Evident
Al Index Rankings. The objective was to identify distinct patterns in
banks' integration and use of Al technologies, with an emphasis on talent,
innovation, leadership, and transparency. Utilizing PCA for
dimensionality reduction, the study distilled the intricate aspects of Al
adoption into fundamental components, thereby improving the
comprehension of clustering patterns among banks. The k-means
clustering identified unique segments within the sector, such as early Al
adopters, innovation leaders, and conservative implementers, each

K-Means Clusteri o . . L
cans Hsterng exhibiting distinct levels of Al maturity and application focus. These

findings provided valuable insights into the competitive landscape of Al
utilization in banking, highlighting leading institutions in Al-driven
transformation and those encountering adoption challenges. The insights
from this analysis offered practical implications for stakeholders, guiding
strategies for improved Al integration and competitive positioning. The
study emphasizes the significance of data-driven benchmarking tools,
such as the Evident Al Index, in assessing and guiding technological
evolution across the sector.

This is an open access article under the CC-BY-SA license.

1. Introduction

The rapid advancement of artificial intelligence (AI) has significantly reshaped operational and
strategic paradigms within the banking sector. As financial institutions navigate the complexities of
digital transformation, the adoption of AI technologies has emerged as a key differentiator for
achieving competitive advantage, enhancing service delivery, and fostering innovation [1], [2].
However, the pace and scope of Al integration vary across the industry, influenced by organizational
readiness, leadership vision, technological capacity, and regulatory environments [3]. In this context,
understanding how different banks approach and implement Al has become critical for stakeholders
seeking to assess competitive positioning and formulate data-driven strategies. This study
investigates the patterns of Al adoption in the banking industry through a data-centric lens,
employing a principal component analysis (PCA)-based k-means clustering methodology. Drawing
on the Evident Al Index Rankings—a comprehensive benchmarking tool that evaluates banks across
dimensions such as talent, innovation, leadership, and transparency—this analysis simplifies
complex Al adoption metrics into interpretable groupings [4]. The application of PCA effectively
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reduces the dimensionality of the dataset, enabling the capture of the most significant variances in
the data and highlighting structural patterns in Al engagement among banks [5].

The clustering analysis reveals distinct Al adoption profiles within the sector. Notably, the study
identifies groups such as early Al adopters, characterized by robust innovation capacity and strategic
leadership in Al integration; innovation leaders, who drive Al research and development yet may
encounter implementation bottlenecks; and conservative implementers, who are slower to adopt
advanced Al tools [6]. These clusters reflect varying levels of Al maturity and deployment focus,
offering a nuanced understanding of how banks align their digital strategies with evolving
technological opportunities and constraints. By mapping these adoption patterns, the study provides
critical insights into the competitive landscape of Al utilization in banking. The findings highlight
institutions at the forefront of Al-driven transformation and reveal the structural and strategic
challenges that others face. Moreover, clustering techniques enhance strategic clarity, enabling
banks, investors, and regulators to benchmark performance, evaluate risk, and identify pathways
toward more effective Al integration [7].

This research underscores the importance of data-driven frameworks, such as the Evident Al Index,
for assessing technological evolution in the financial services industry. As Al redefines operational
models and market dynamics, tools that provide comparative insight into adoption behavior are
essential for guiding strategic foresight and digital capability development [8]. This study contributes
to that endeavor by offering a rigorous analytical approach to understanding Al maturity and
clustering within one of the most innovative and sensitive sectors of the global economy.

2.  Methodology

This study systematically integrates PCA and k-means clustering to uncover patterns within the
Evident Al Index dataset. This methodology provides a robust framework for dimensionality
reduction, optimal cluster selection, and the interpretation of meaningful groupings.

2.1 Data Source

The primary dataset for this study was drawn from the 2024 Evident Al Index Rankings
(https://evidentinsights.com/ai-index/), a structured benchmarking tool assessing the Al maturity of
global banks. The Index evaluates institutions based on four key pillars: talent, innovation,
leadership, and transparency. Each pillar comprises multiple indicators, yielding a multidimensional
dataset that captures both qualitative and quantitative facets of Al adoption [4].

The Evident Al Index, created by Evident, is an intelligence platform that measures and monitors Al
integration within the financial services industry. It offers an unparalleled standard for assessing Al
adoption and development across the banking sector. It evaluates fifty of the largest banks in North
America, Europe, and Asia using ninety indicators derived from millions of publicly available data
points [4]. Table 1 presents descriptive statistics for the Evident Al index, providing a detailed
overview of its underlying data.

Table 1. Descriptive Statistics of the Evident Al Index

N =50 Mean Std. Error Std. Deviation
Talent 35.856 1.4944 10.5667
Innovation 23.430 1.9695 13.9262
Leadership 27.340 2.0818 14.7206
Transparency 30.878 2.7733 19.6099

2.2 Principal Component Analysis (PCA)

To ensure comparability across variables with different scales and units, all data were standardized
using z-score normalization. This preprocessing step ensured that each feature contributed equally to
the clustering process. Principal Component Analysis (PCA) was applied to reduce dimensionality
and capture the most significant variance in the dataset. This process begins by computing the PCA
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components and analyzing the explained variance ratio to determine the optimal number of
components to retain [9]. This step helped simplify the data structure and enhanced interpretability
while mitigating multicollinearity [5].

2.3 K-Means Clustering

The reduced dataset from PCA was subjected to k-means clustering to identify distinct groups of
banks based on their Al maturity profiles [10]. This involves iterating over a range of cluster counts
and performing k-means for each specified number of clusters. This initial step generates multiple
clustering outcomes, including cluster labels, centroids, and inertia values, which are further
evaluated in subsequent steps [11]. The algorithm groups data points into clusters by minimizing the
sum of squared errors (SSE) within clusters [12]. The optimal number of clusters was determined
using the Elbow Method, Average Silhouette Score, Gap Statistic, and NbClust() Function. Each
resulting cluster was then profiled based on its centroid characteristics to uncover adoption patterns.
These complementary methods ensure a robust and consistent approach to determining the optimal
cluster count.

3.  Results and Discussion
3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is employed to reduce the dimensionality of the dataset while
preserving the variance that captures the primary factors influencing global Al competitiveness
(Figure 1). This process involves calculating the principal components and examining the explained
variance ratio to identify the optimal number of components to retain [9]. Table 2 provides a detailed
understanding of how each original variable contributes to the principal components. In this table,
each cell represents the loading of a variable on a principal component.

Table 2. Principal Component Analysis (PCA) Loadings

Index PC1 PC2 PC3 PC4

Talent -0.5301 -0.4799 -0.0019 0.6991
Innovation -0.5335 -0.4340 0.1849 -0.7020
Leadership -0.4553 0.6497 0.6001 0.1024
Transparency -0.4765 0.3991 -0.7782 -0.0896

Eigenvalues quantify the variation captured by each principal component, serving as a measure of
their importance. In this study, we analyzed the eigenvalues to determine the appropriate number of
principal components to retain [9]. Table 3 presents the eigenvalues and the proportion of variance
(i.e., information) explained by each principal component. The total variance of the dataset is equal
to the sum of the eigenvalues, which is 4.

Table 3. Eigenvalues, Variance %, and Cumulative Variance %

Dim. Eigenvalue Variance % Cumulative Variance %
Dim. 1 2.5668 64.1711 64.1711
Dim. 2 0.6674 16.6845 80.8556
Dim. 3 0.5098 12.7452 93.6008
Dim. 4 0.2560 6.3992 100.0000

The proportion of variation explained by each eigenvalue is presented in the second column. For
instance, dividing an eigenvalue of 2.5668 by the total variance of 4 yields 0.6417, indicating that
the first principal component explains approximately 64.17% of the variation. The cumulative
percentage of variation explained is calculated by successively adding these proportions to obtain a
running total. For example, adding 64.17% to 16.68% results in 80.85%. Thus, the first two
eigenvalues account for approximately 80.85% of the total variation.
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Figure 1. Screen Plot of Principal Components

The correlation between a variable and a principal component represents the variable's coordinate on
that principal component. This type of visualization is known as a variable correlation plot (Figure
2), which illustrates the relationships among all variables. Additionally, a biplot (Figure 3) combines
the variable correlations and observations, visually displaying the relationships between variables
and individual data points. This dual representation enhances the interpretability of the principal
components by showing how variables contribute to patterns within the observations.
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Figure 2. Variable Correlation Plot of Principal Components
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Figure 3. Biplot of Principal Components

3.2 K-Means Clustering
3.2.1 Elbow Method

The elbow method evaluates the total within-cluster sum of squares (WSS), also called total intra-
cluster variation, as a function of the number of clusters. The WSS measures the compactness of the
clustering, with smaller values indicating tighter clusters. The analysis of this study suggested an
optimal solution with 3 clusters (Figure 4). However, it is essential to note that the elbow method
can sometimes yield ambiguous results, as the bend in the plot is not always distinct. Alternatively,
the average silhouette score method may be used. This method evaluates cluster quality based on
cohesion and separation and can be applied to any clustering approach for additional validation.
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Figure 4. Optimal Number of Clusters Using the Elbow Method
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3.2.1 Average Silhouette Score Method

The average silhouette score method evaluates clustering quality by computing the average silhouette
score across different cluster values [13]. The optimal number of clusters is the one that maximizes
the average silhouette score across a range of possible values. The silhouette score measures how
well each point in a cluster is separated from points in neighboring clusters. A higher score indicates
more defined and cohesive clusters. The silhouette plot visually represents this measure, providing
insights into the clustering quality. The analysis of this study suggested an optimal solution with 3
clusters (Figure 5). This method complements the elbow method by offering a more quantitative and
visually intuitive approach to determining the number of clusters.
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Figure 5. Optimal Number of Clusters Using the Average Silhouette Score Method

3.2.2 Gap Statistic Method

The gap statistic method evaluates the total within-cluster variation for various cluster counts and
compares these values with their expected values under a null reference distribution of the data [14].
The optimal number of clusters is estimated as the value that maximizes the gap statistic (i.e., yields
the most significant gap). This indicates that the clustering structure deviates significantly from a
random, uniform distribution of points. While the elbow and average silhouette score methods
provide valuable insights, they measure global clustering characteristics only and lack a formal
statistical basis. The gap statistic method offers a more rigorous approach, formalizing the
elbow/silhouette heuristics into a statistical procedure for estimating the optimal number of clusters.
In this study, the analysis suggested an optimal solution of a single cluster (Figure 6), highlighting
the statistical robustness of the gap statistic method.
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Figure 6. Optimal Number of Clusters Using the Gap Statistic Method

3.2.3 NbClust() Function

The NbClust() function, part of the NbClust package in R [15], is a powerful tool for determining
the optimal number of clusters in clustering algorithms. It evaluates 30 indices to determine the
optimal number of clusters and recommends the most appropriate clustering scheme based on the
results. This function allows users to explore combinations of cluster count, distance measures, and
clustering methods. In this study, based on the majority rule across the computed indices, the optimal
number of clusters was determined to be three (Figure 7).
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Figure 7. Optimal Number of Clusters Using NbClust() Function

3.3  Cluster Profiling

Following the clustering process, each cluster was meticulously analyzed in relation to the original
variables: talent, innovation, leadership, and transparency. This analysis aimed to interpret the nature
of Al adoption among the banks. Consequently, three distinct clusters emerged, as illustrated in
Figures 8 and 9. These clusters were labeled based on their relative scores: "early Al adopters,"
"innovation leaders," and "conservative implementers."
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Figure 8. Cluster Plot of the Three Identified Clusters
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Figure 9. Individuals - PCA Plot of the Three Identified Clusters

The ANOVA results for the Evident Al Index reveal significant differences between clusters across
all four indices: Talent, Innovation, Leadership, and Transparency (Table 6). For the Talent Index,
the F-value of 35.178 and a significance level of < 0.001 indicate substantial variability between
groups. Similarly, the Innovation Index shows an F-value of 69.009 with a significant level of <
0.001, highlighting notable differences among clusters. The Leadership Index also demonstrates
significant differences, with an F-value of 15.372 and a significance level of < 0.001. Lastly, the
Transparency Index presents an F-value of 21.870 and a significance level of < 0.001, confirming
significant disparities between groups. These results underscore each cluster's distinct characteristics
and performance levels, suggesting that the clusters are meaningfully differentiated in terms of
Talent, Innovation, Leadership, and Transparency.

Table 6. ANOVA Table

Index Sum of Squares df  Mean Square F Sig.
Talent Between Groups 3279.972 2 1639.986 35.178 < 0.001
Within Groups 2191.151 47 46.620
Total 5471.123 49
Innovation Between Groups 7088.946 2 3544.473 69.009 <0.001
Within Groups 2414.019 47 51.362
Total 9502.965 49
Leadership Between Groups 4198.902 2 2099.451 15.372  <0.001
Within Groups 6419.158 47 136.578
Total 10618.060 49
Transparency  Between Groups 9082.887 2 4541.443 21.870  <0.001
Within Groups 9760.059 47 207.661
Total 18842.946 49
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4. Conclusion

This study investigated the adoption patterns of artificial intelligence in the global banking sector
using a PCA-based k-means clustering methodology, drawing from the Evident Al Index Rankings.
Through dimensionality reduction and unsupervised learning, the analysis identified three primary
segments: early adopters, innovation leaders, and conservative implementers. These clusters revealed
significant variation in how banks approach Al across talent acquisition, innovation, leadership
visibility, and Al transparency.

The emergence of early adopters, innovation leaders, and conservative implementers aligns with
findings in digital transformation literature, which suggest that strategic priorities and institutional
readiness significantly affect the pace and scope of Al integration [16], [8]. The innovation leaders
group demonstrates that sustained investments in Al talent and R&D correlate with broader
leadership in digital transformation. These banks will likely capture early-mover advantages,
including efficiency gains, customer retention, and regulatory readiness. Conversely, conservative
implementers may face competitive pressures and risk-management challenges, particularly in an era
increasingly driven by data and automation.

The clustering results have several policy implications for regulators and industry stakeholders. First,
the uneven distribution of Al maturity underscores the need for differentiated regulatory engagement.
Innovation leaders may benefit from regulatory sandboxes that enable experimentation, whereas
conservative implementers may require structured guidance to adopt Al safely within a compliance
framework. Second, the study highlights the role of transparency as a signaling mechanism. Banks
that publicly disclose Al strategies, ethical commitments, and performance metrics tend to rank
higher in maturity. Regulators and oversight bodies could encourage standardized Al reporting
practices, fostering greater accountability and trust in Al systems.

Finally, the importance of Al talent concentration underscores the need for cross-sector collaboration
among governments, academia, and industry to build inclusive talent pipelines. The talent gap could
exacerbate global inequalities in Al adoption and financial innovation without such initiatives. By
combining the analytical strength of PCA with the interpretive clarity of clustering, this research
offers a structured perspective on the relative Al maturity of institutions. The segmentation uncovers
current competitive positioning and provides a foundation for tracking technological trajectories over
time. Moreover, using PCA and k-means proved effective in uncovering nuanced adoption patterns
that would be difficult to detect using traditional categorical assessments. Integrating benchmarking
tools like the Evident Al Index into clustering analysis provides a replicable framework for tracking
technological transformation over time.

The study contributes to the growing body of literature seeking to demystify Al deployment in
financial services, offering actionable insights for banks, regulators, and policymakers. From a policy
and strategic planning perspective, this segmentation can guide stakeholders in crafting tailored
interventions, supporting lagging banks through targeted talent programs or fostering collaborative
ecosystems that incentivize Al adoption across the financial sector.
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