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1. Introduction  

The rapid advancement of artificial intelligence (AI) has significantly reshaped operational and 

strategic paradigms within the banking sector. As financial institutions navigate the complexities of 

digital transformation, the adoption of AI technologies has emerged as a key differentiator for 

achieving competitive advantage, enhancing service delivery, and fostering innovation [1], [2]. 

However, the pace and scope of AI integration vary across the industry, influenced by organizational 

readiness, leadership vision, technological capacity, and regulatory environments [3]. In this context, 

understanding how different banks approach and implement AI has become critical for stakeholders 

seeking to assess competitive positioning and formulate data-driven strategies. This study 

investigates the patterns of AI adoption in the banking industry through a data-centric lens, 

employing a principal component analysis (PCA)-based k-means clustering methodology. Drawing 

on the Evident AI Index Rankings—a comprehensive benchmarking tool that evaluates banks across 

dimensions such as talent, innovation, leadership, and transparency—this analysis simplifies 

complex AI adoption metrics into interpretable groupings [4]. The application of PCA effectively 

A R T I C L E  I N F O 

 

A BST RAC T   

 

 

Article history 

Received January 28, 2025 

Revised March 24, 2025 

Accepted June 24, 2025 

 The study investigated the adoption of AI in the banking sector using a 

PCA-based k-means clustering method, drawing on data from the Evident 

AI Index Rankings. The objective was to identify distinct patterns in 

banks' integration and use of AI technologies, with an emphasis on talent, 

innovation, leadership, and transparency. Utilizing PCA for 

dimensionality reduction, the study distilled the intricate aspects of AI 

adoption into fundamental components, thereby improving the 

comprehension of clustering patterns among banks. The k-means 

clustering identified unique segments within the sector, such as early AI 

adopters, innovation leaders, and conservative implementers, each 

exhibiting distinct levels of AI maturity and application focus. These 

findings provided valuable insights into the competitive landscape of AI 

utilization in banking, highlighting leading institutions in AI-driven 

transformation and those encountering adoption challenges. The insights 

from this analysis offered practical implications for stakeholders, guiding 

strategies for improved AI integration and competitive positioning. The 

study emphasizes the significance of data-driven benchmarking tools, 

such as the Evident AI Index, in assessing and guiding technological 

evolution across the sector. 
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reduces the dimensionality of the dataset, enabling the capture of the most significant variances in 

the data and highlighting structural patterns in AI engagement among banks [5]. 

The clustering analysis reveals distinct AI adoption profiles within the sector. Notably, the study 

identifies groups such as early AI adopters, characterized by robust innovation capacity and strategic 

leadership in AI integration; innovation leaders, who drive AI research and development yet may 

encounter implementation bottlenecks; and conservative implementers, who are slower to adopt 

advanced AI tools [6]. These clusters reflect varying levels of AI maturity and deployment focus, 

offering a nuanced understanding of how banks align their digital strategies with evolving 

technological opportunities and constraints. By mapping these adoption patterns, the study provides 

critical insights into the competitive landscape of AI utilization in banking. The findings highlight 

institutions at the forefront of AI-driven transformation and reveal the structural and strategic 

challenges that others face. Moreover, clustering techniques enhance strategic clarity, enabling 

banks, investors, and regulators to benchmark performance, evaluate risk, and identify pathways 

toward more effective AI integration [7]. 

This research underscores the importance of data-driven frameworks, such as the Evident AI Index, 

for assessing technological evolution in the financial services industry. As AI redefines operational 

models and market dynamics, tools that provide comparative insight into adoption behavior are 

essential for guiding strategic foresight and digital capability development [8]. This study contributes 

to that endeavor by offering a rigorous analytical approach to understanding AI maturity and 

clustering within one of the most innovative and sensitive sectors of the global economy. 

2. Methodology 

This study systematically integrates PCA and k-means clustering to uncover patterns within the 

Evident AI Index dataset. This methodology provides a robust framework for dimensionality 

reduction, optimal cluster selection, and the interpretation of meaningful groupings. 

2.1 Data Source 

The primary dataset for this study was drawn from the 2024 Evident AI Index Rankings 

(https://evidentinsights.com/ai-index/), a structured benchmarking tool assessing the AI maturity of 

global banks. The Index evaluates institutions based on four key pillars: talent, innovation, 

leadership, and transparency. Each pillar comprises multiple indicators, yielding a multidimensional 

dataset that captures both qualitative and quantitative facets of AI adoption [4]. 

The Evident AI Index, created by Evident, is an intelligence platform that measures and monitors AI 

integration within the financial services industry. It offers an unparalleled standard for assessing AI 

adoption and development across the banking sector. It evaluates fifty of the largest banks in North 

America, Europe, and Asia using ninety indicators derived from millions of publicly available data 

points [4]. Table 1 presents descriptive statistics for the Evident AI index, providing a detailed 

overview of its underlying data. 

Table 1. Descriptive Statistics of the Evident AI Index 

N = 50 Mean Std. Error Std. Deviation 

Talent 35.856 1.4944 10.5667 

Innovation 23.430 1.9695 13.9262 

Leadership 27.340 2.0818 14.7206 

Transparency 30.878 2.7733 19.6099 

 
2.2 Principal Component Analysis (PCA) 

To ensure comparability across variables with different scales and units, all data were standardized 

using z-score normalization. This preprocessing step ensured that each feature contributed equally to 

the clustering process. Principal Component Analysis (PCA) was applied to reduce dimensionality 

and capture the most significant variance in the dataset. This process begins by computing the PCA 
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components and analyzing the explained variance ratio to determine the optimal number of 

components to retain [9]. This step helped simplify the data structure and enhanced interpretability 

while mitigating multicollinearity [5]. 

2.3 K-Means Clustering 

The reduced dataset from PCA was subjected to k-means clustering to identify distinct groups of 

banks based on their AI maturity profiles [10]. This involves iterating over a range of cluster counts 

and performing k-means for each specified number of clusters. This initial step generates multiple 

clustering outcomes, including cluster labels, centroids, and inertia values, which are further 

evaluated in subsequent steps [11]. The algorithm groups data points into clusters by minimizing the 

sum of squared errors (SSE) within clusters [12]. The optimal number of clusters was determined 

using the Elbow Method, Average Silhouette Score, Gap Statistic, and NbClust() Function. Each 

resulting cluster was then profiled based on its centroid characteristics to uncover adoption patterns. 

These complementary methods ensure a robust and consistent approach to determining the optimal 

cluster count. 

3. Results and Discussion 

3.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is employed to reduce the dimensionality of the dataset while 

preserving the variance that captures the primary factors influencing global AI competitiveness 

(Figure 1). This process involves calculating the principal components and examining the explained 

variance ratio to identify the optimal number of components to retain [9]. Table 2 provides a detailed 

understanding of how each original variable contributes to the principal components. In this table, 

each cell represents the loading of a variable on a principal component. 

Table 2. Principal Component Analysis (PCA) Loadings 

Index PC1 PC2 PC3 PC4 

Talent -0.5301 -0.4799 -0.0019 0.6991 

Innovation -0.5335 -0.4340 0.1849 -0.7020 

Leadership -0.4553 0.6497 0.6001 0.1024 

Transparency -0.4765 0.3991 -0.7782 -0.0896 

 
Eigenvalues quantify the variation captured by each principal component, serving as a measure of 

their importance. In this study, we analyzed the eigenvalues to determine the appropriate number of 

principal components to retain [9]. Table 3 presents the eigenvalues and the proportion of variance 

(i.e., information) explained by each principal component. The total variance of the dataset is equal 

to the sum of the eigenvalues, which is 4. 

Table 3. Eigenvalues, Variance %, and Cumulative Variance % 

Dim. Eigenvalue Variance % Cumulative Variance % 

Dim. 1 2.5668 64.1711 64.1711 

Dim. 2 0.6674 16.6845 80.8556 

Dim. 3 0.5098 12.7452 93.6008 

Dim. 4 0.2560 6.3992 100.0000 

 

The proportion of variation explained by each eigenvalue is presented in the second column. For 

instance, dividing an eigenvalue of 2.5668 by the total variance of 4 yields 0.6417, indicating that 

the first principal component explains approximately 64.17% of the variation. The cumulative 

percentage of variation explained is calculated by successively adding these proportions to obtain a 

running total. For example, adding 64.17% to 16.68% results in 80.85%. Thus, the first two 

eigenvalues account for approximately 80.85% of the total variation. 
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Figure 1. Screen Plot of Principal Components 

 
The correlation between a variable and a principal component represents the variable's coordinate on 

that principal component. This type of visualization is known as a variable correlation plot (Figure 

2), which illustrates the relationships among all variables. Additionally, a biplot (Figure 3) combines 

the variable correlations and observations, visually displaying the relationships between variables 

and individual data points. This dual representation enhances the interpretability of the principal 

components by showing how variables contribute to patterns within the observations. 

 

Figure 2. Variable Correlation Plot of Principal Components 
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Figure 3. Biplot of Principal Components 

 
3.2 K-Means Clustering 

3.2.1 Elbow Method 

The elbow method evaluates the total within-cluster sum of squares (WSS), also called total intra-

cluster variation, as a function of the number of clusters. The WSS measures the compactness of the 

clustering, with smaller values indicating tighter clusters. The analysis of this study suggested an 

optimal solution with 3 clusters (Figure 4). However, it is essential to note that the elbow method 

can sometimes yield ambiguous results, as the bend in the plot is not always distinct. Alternatively, 

the average silhouette score method may be used. This method evaluates cluster quality based on 

cohesion and separation and can be applied to any clustering approach for additional validation. 

 

 

Figure 4. Optimal Number of Clusters Using the Elbow Method 
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3.2.1 Average Silhouette Score Method 

The average silhouette score method evaluates clustering quality by computing the average silhouette 

score across different cluster values [13]. The optimal number of clusters is the one that maximizes 

the average silhouette score across a range of possible values. The silhouette score measures how 

well each point in a cluster is separated from points in neighboring clusters. A higher score indicates 

more defined and cohesive clusters. The silhouette plot visually represents this measure, providing 

insights into the clustering quality. The analysis of this study suggested an optimal solution with 3 

clusters (Figure 5). This method complements the elbow method by offering a more quantitative and 

visually intuitive approach to determining the number of clusters. 

 

 

Figure 5. Optimal Number of Clusters Using the Average Silhouette Score Method 

3.2.2 Gap Statistic Method 

The gap statistic method evaluates the total within-cluster variation for various cluster counts and 

compares these values with their expected values under a null reference distribution of the data [14]. 

The optimal number of clusters is estimated as the value that maximizes the gap statistic (i.e., yields 

the most significant gap). This indicates that the clustering structure deviates significantly from a 

random, uniform distribution of points. While the elbow and average silhouette score methods 

provide valuable insights, they measure global clustering characteristics only and lack a formal 

statistical basis. The gap statistic method offers a more rigorous approach, formalizing the 

elbow/silhouette heuristics into a statistical procedure for estimating the optimal number of clusters. 

In this study, the analysis suggested an optimal solution of a single cluster (Figure 6), highlighting 

the statistical robustness of the gap statistic method. 
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Figure 6. Optimal Number of Clusters Using the Gap Statistic Method 

3.2.3 NbClust() Function 

The NbClust() function, part of the NbClust package in R [15], is a powerful tool for determining 

the optimal number of clusters in clustering algorithms. It evaluates 30 indices to determine the 

optimal number of clusters and recommends the most appropriate clustering scheme based on the 

results. This function allows users to explore combinations of cluster count, distance measures, and 

clustering methods. In this study, based on the majority rule across the computed indices, the optimal 

number of clusters was determined to be three (Figure 7). 
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Figure 7. Optimal Number of Clusters Using NbClust() Function 

3.3 Cluster Profiling 

Following the clustering process, each cluster was meticulously analyzed in relation to the original 

variables: talent, innovation, leadership, and transparency. This analysis aimed to interpret the nature 

of AI adoption among the banks. Consequently, three distinct clusters emerged, as illustrated in 

Figures 8 and 9. These clusters were labeled based on their relative scores: "early AI adopters," 

"innovation leaders," and "conservative implementers." 

 

Figure 8. Cluster Plot of the Three Identified Clusters 
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Figure 9. Individuals - PCA Plot of the Three Identified Clusters 

 
The ANOVA results for the Evident AI Index reveal significant differences between clusters across 

all four indices: Talent, Innovation, Leadership, and Transparency (Table 6). For the Talent Index, 

the F-value of 35.178 and a significance level of < 0.001 indicate substantial variability between 

groups. Similarly, the Innovation Index shows an F-value of 69.009 with a significant level of < 

0.001, highlighting notable differences among clusters. The Leadership Index also demonstrates 

significant differences, with an F-value of 15.372 and a significance level of < 0.001. Lastly, the 

Transparency Index presents an F-value of 21.870 and a significance level of < 0.001, confirming 

significant disparities between groups. These results underscore each cluster's distinct characteristics 

and performance levels, suggesting that the clusters are meaningfully differentiated in terms of 

Talent, Innovation, Leadership, and Transparency. 

Table 6. ANOVA Table 

Index  Sum of Squares df Mean Square F Sig. 

Talent Between Groups 3279.972 2 1639.986 35.178 < 0.001 

Within Groups 2191.151 47 46.620   

Total 5471.123 49    

Innovation Between Groups 7088.946 2 3544.473 69.009 < 0.001 

Within Groups 2414.019 47 51.362   

Total 9502.965 49    

Leadership Between Groups 4198.902 2 2099.451 15.372 < 0.001 

Within Groups 6419.158 47 136.578   

Total 10618.060 49    

Transparency Between Groups 9082.887 2 4541.443 21.870 < 0.001 

Within Groups 9760.059 47 207.661   

Total 18842.946 49    
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4. Conclusion 

This study investigated the adoption patterns of artificial intelligence in the global banking sector 

using a PCA-based k-means clustering methodology, drawing from the Evident AI Index Rankings. 

Through dimensionality reduction and unsupervised learning, the analysis identified three primary 

segments: early adopters, innovation leaders, and conservative implementers. These clusters revealed 

significant variation in how banks approach AI across talent acquisition, innovation, leadership 

visibility, and AI transparency. 

The emergence of early adopters, innovation leaders, and conservative implementers aligns with 

findings in digital transformation literature, which suggest that strategic priorities and institutional 

readiness significantly affect the pace and scope of AI integration [16], [8]. The innovation leaders 

group demonstrates that sustained investments in AI talent and R&D correlate with broader 

leadership in digital transformation. These banks will likely capture early-mover advantages, 

including efficiency gains, customer retention, and regulatory readiness. Conversely, conservative 

implementers may face competitive pressures and risk-management challenges, particularly in an era 

increasingly driven by data and automation. 

The clustering results have several policy implications for regulators and industry stakeholders. First, 

the uneven distribution of AI maturity underscores the need for differentiated regulatory engagement. 

Innovation leaders may benefit from regulatory sandboxes that enable experimentation, whereas 

conservative implementers may require structured guidance to adopt AI safely within a compliance 

framework. Second, the study highlights the role of transparency as a signaling mechanism. Banks 

that publicly disclose AI strategies, ethical commitments, and performance metrics tend to rank 

higher in maturity. Regulators and oversight bodies could encourage standardized AI reporting 

practices, fostering greater accountability and trust in AI systems. 

Finally, the importance of AI talent concentration underscores the need for cross-sector collaboration 

among governments, academia, and industry to build inclusive talent pipelines. The talent gap could 

exacerbate global inequalities in AI adoption and financial innovation without such initiatives. By 

combining the analytical strength of PCA with the interpretive clarity of clustering, this research 

offers a structured perspective on the relative AI maturity of institutions. The segmentation uncovers 

current competitive positioning and provides a foundation for tracking technological trajectories over 

time. Moreover, using PCA and k-means proved effective in uncovering nuanced adoption patterns 

that would be difficult to detect using traditional categorical assessments. Integrating benchmarking 

tools like the Evident AI Index into clustering analysis provides a replicable framework for tracking 

technological transformation over time. 

The study contributes to the growing body of literature seeking to demystify AI deployment in 

financial services, offering actionable insights for banks, regulators, and policymakers. From a policy 

and strategic planning perspective, this segmentation can guide stakeholders in crafting tailored 

interventions, supporting lagging banks through targeted talent programs or fostering collaborative 

ecosystems that incentivize AI adoption across the financial sector. 
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