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1. Introduction

The advanced information and communicattenhnologies (ICTs) tend to become extensively
embedded twmur daily life. One key area witnessing on thisthe proliferating bright age of
electricity termed the intelligengrid or more known as the Smart Grid (SG). Compaied
the actual grid, the Smart Grid incorporates a bi-dioel flow of information, automation and
control. It is characterizedy optimized energy efficiency through the reci@locealtime
exchange of information between utility company dhd users based on the deployment of
advanced sensorsmnart meters and the information technology (IF$]1

The smart grid can be regarded as a layered ugelvad platform, comprising the power system
layer, a controkection, a communication link, a security sectiod anapplication layer. The
communication link ensures a tweay communication in the smart grid system. It e of
the most crucial agents that enable smart grid appdieat Thesmart grid can be cast as an
involved collection of networks, involving both high voltage and communicatimfrastructures
along with various intelligent electrontevices (IEDs) [7-8]. Communication networks comss
the required infrastructure enabling a utility to mamiandcontrol these devices from a remote
location. In the smargrid system, diverse communication technologies arahitectures are
brought together. Communication networkbould satisfy some desired properties such as
reliability, latency, bandwidth and security, corresponding dohesmart grid application. The
involvedness of the smart gridmay result in complications in selecting right
communicatiometworks because of the large number of paramatetdiverse requirements to be
taken into account in relation the applications and utility expectations.



ISSN 2722-2039 International Journal on Data Se&enc 83
Vol. 1, No. 2, December 2020, pp. 82-98

Wide-area monitoring, wide-area control and wideaagprotection utilize Wide Area Networks and

turn out to be the next-generation key to imprpeeer system planning, operation and protection
in the smart grid. These applications employ thstesn broad data and wisely chosen local
information to oppose the spread of harming dostoces [1]. Wide-area monitoring, control

and protection applications present higher datsludion and shorter response time than the
classical supervisory control and data acquisif@CADA) and energy management (EMS)
systems. Wide-area monitoring, control and prasecapplications provide high-resolution data

contrary to SCADA/EMS which offers a measuremeapdaie interval of several seconds (or even
minutes).

The IEEE Standard for Synchrophasors for PoweteBys (IEEE Std.C37.118 provides definitions
of measurement and data transmission formats dal-time data reporting in electric power
systems [9]. For wide-area monitoring applicatiahg size containing measurements made by a
PMU has a minimum message of 52 bytes. The redjugsponse time for wide area monitoring
applications is in the range of milliseconds tmutes, and the requirement on communication
system reliability is very high.

Though wide-area protection and control apfibces present more advanced protection/control
systems in comparison to the traditional powsrstems, more rigorous performance and
availability requirements are needed. As assifiation, the required response time fodewi
area protection and control applications shobéd in the range of milliseconds to minutes
and the communication system reliability liegment should be very high. The typical message
size can vary according to the employed commuioicgirotocols. Examples of protocols used for
these applications include MIRRORED BITSJEC 61850, Generic Object-Oriented
Substation Event (GOOSE), and ETHER-CAT commuitina [10].

Due to the importance of the communication infradture in the success of smart grid

implementation and operation, there has beeniatyaf research works in the literature focusing
on this topic. The authors of [1, 11-13] presesNiews about the conditions that the smart
grid requires from communication point of view. &mgrid technologies and standards are
investigated to come up with an outline of the drgaid model and the incorporation of various
communication technologies in [14,15]. Some inigadions stress on a particular standard
or communication technology such as power lin@roonication [16] and wireless communication

[17,18]. In [19], the authors assess the netwmmKormance for a long-distance distribution line
and propose communication layout for distributidevel systems. Furthermore, the

suitable communication technologies for transrois$ével systems are discussed in [20].

Multiple-input multiple output (MIMO) techniqueseaibeing widely adopted in the current fourth
generation (4G) telecommunication systems and &neyexpected to be a key technologies for the
fifth-generation (5G) communications. MIMO systetake advantage of the multipath nature of
the propagation channel. However, the antenna eptiep turn out to affect correlations
among channel coefficients. MIMO, as a currentsilwestablished technology, offers considerable
benefits, such as improving link quality and ldygattainable data rates [21-28]. When antenna
array elements are made closer one another, fibet of electromagnetic mutual coupling between
them becomes a common phenomenon. The mutoabplieg can dangerously deteriorate the
performance of the array in the form of signalrtterference-noise ratio (SINR) reduction and the
signal processing algorithm non-convergence [9-30 precisely degrades some parameters
such as the carrier frequency offset [31], cehn[32], and angle of arrival estimations ][33
Also, the awful effect of mutual coupling on thaige reflection coefficient of a MIMO antenna is
another result that cannot be ignored [34]. Funtoee, the active voltage standing wave ratio
(VSWR) may reach intolerable values. Despite tbgative effects of mutual coupling the MIMO
system performance deterioration, it can be etguofor array calibrations as in [35-36]. The
mutual coupling modifies the antenna charadiesisin an array, and hence affects the KIM
system performance (e.g., capacity, error rammd spectral re-growth). The system
performance can be partly improved by adjustingtbe mutual coupling using digital techniques
but without improving the SINR. Thus, it is vamperative to lessen the mutual coupling when it
comes to MIMO antenna design.

Youcef Grainat et al (Application and Optimizat@ihMIMO Communication in Wide Area Monitoring Sység
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Optimization techniques have been widely employedadience and engineering to solve a variety
of problems. This is due to the introduction mbdern global non-classical techniques that a
able to handle non-differentiable and non-lineamplex functions along with the ever
increasing processing power of computers. Genatgorithms (GA) [37-38], Differential
Evolution (DE), and Particle Swarm Optimization S@ [39-40], are in the class of
evolutionary techniques inspired from nature aadstitute an illustrative example. Other recent
techniques have also been deployed in antenngrdéscluding the Taguchi method [41-42]
based on the concept of fractional factorial desigd Orthogonal Arrays (OAs) that significantly
reduce the number of iterations needed in themigdition process. The Galaxy-based Search
Algorithm (GbSA) is another nature-inspired metaistic technique that imitates the behavior of
spiral galaxies when searching its surroundindy. [Retaheuristics are optimization algorithms
having two fundamental aspects: exploitation axplazation. Exploration means a multitude of
solutions is found within the search space to obthe global optimum. In exploitation, local
search exploits the information about the besutswis found so far. This blend along with
selecting the best solutions will assure that algorithm reaches optimality. Furthermore, the
exploration avoids the local optima traps throughdomization and increases the diversity of the
solutions.

The literature includes many works regarding Migtem antenna design optimization. Capacity
formulas have been presented in [43] and [44] wheutual coupling and spatial correlation
effects with a Rayleigh fading channel have beamsitlered. The considered geometries in these
studies comprise namely the uniformly excited Imaaays with spacing between the elements to
be optimized. In [45] and [46], the right choiokthe number of antennas at the asymmetric base
station and a mobile unit has been addressed4Th MIMO system capacity optimization
with different antenna installation costs at bMHMO ends has been considered. However, the
cost function has been expressed using approxifoateula for the ergodic capacity estimates.
From geometry selection point of view, the Unifottmear Array (ULA) is the most used
geometry in the current wireless systems. TheddmfCircular array (UCA) is as another option
as it exhibits some better properties. Recioui amgntarzi [26-28] challenged
capacity maximization via inter-element spacintgdaination in linear and 2D arrays considering
the joint effects of mutual coupling and spatiatrelation. A channel formula was proposed that
englobes both mutual coupling and spatial catimaeffects and has been compared with its
separate counterparts. The results of this worBwslpromising trends of system capacity
enhancement compared to the studies in literatuhbéich can be beneficial in wireless
communication system design.

In 2016, Mirjalili and Lewis [48] proposed the WhaDptimization Algorithm (WOA) to imitate
the hunting activitiy of humpback whales. Thisidtt is done by a combination of two main
behaviors: randomly chasing the prey and the ledbbt hunting approach. Humpback whales
possess an amazing hunting philosophy. This hutt@tvior is known as the bubble-net feeding
technique. Humpback whales are fond of huntinglisfish flocks close to the ocean surface. So,
they make in swimming around the target prey wigeihaped target pattern, producing
distinguishing blebs along a circle or simply &iaped ways.

Several improvement initiatives of WOA have beemaldn the literature. These can be divided
into two categories: improving the WOA'’s performmanand Appling the WOA to solve some
optimization problems. Some of WOA's improvemettempts are in [49-51]. Kaur and Arora
[49] suggested chaotic WOA (CWOA) where the chabthe ory are used for tuning the main
parameters of WOA to enhance its rate of convexgielm [50], Lévy flight trajectory-based WOA
(LWOA) is introduced. The LWOA employed Lévy flightajectory to boost the population
diversity. In [51], a modified WOA (MWOA) has beentroduced to solve large scale global
optimization problems. In MWOA the Lévy flight stegy was employed to improve WOA's
exploration ability. To improve the exploitatiobilty of WOA, a quadratic interpolation method
has been used in MWOA. In addition, MWOA utilizadnlinear control strategy to control the
whole search process and balance the explorahdntiee exploitation ability of WOA. On the
other hand, WOA has been applied to many realdvapplications. In [52], the combination of
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WOA and pattern search (PS) algorithms [53] haanljgresented and applied to power system
design. In [54], an approach of embedding simulatedealing (SA) into WOA to produce four
feature selection methods has been proposed. SAapplied as a local search to improve the
exploitation ability of WOA. Aljarah, Faris, and iNalili [55] applied WOA to Neural
Networks training. In [56], WOA in conjunction thi Moth-Flame Optimization (MFO)
algorithms were applied to the multi-level thregimy image segmentation problem. In
[57], WOA was utilized to tackle the optimal raaet power dispatch problem. Yu et al. [58]
proposed levy flight WOA (LWOA) and used it to iogize the parameters of an active disturbance
rejection control (ADRC) scheme for automatic martanding system (ACLS). In [59], Wu et al.
improved WOA and utilized it for proposing a nowelth planning framework for a solar-powered
UAV (SUAV) in urban environment. WOA has been hgired with DE which has good
exploration ability and present an algorithm nanmagroved WOA (IWOA). The performance of
IWOA has been improved by presenting an IWOA irclita new control parameter is introduced.
In addition, re-initialization is integrated inf&/OA to increase diversity of population.

In this paper, the WOA algorithm is employed toveolhe problem of capacity maximization in
MIMO systems cast as an optimization task. Theouaradvantages of the whale optimization
algorithm, such as the reduced number of parameted lack of local optima entrapment
constitute the motivation to this choice. Beingeledent on the antenna array physical dimensions,
the main goal is to find these physical dimensanihe transmitter/Receiver arrays that ensure th
highest possible capacity. The MIMO systems cawsid in this work incorporate
the conventionally used linear arrays along with proposed 2D antenna arrays. The designed
MIMO systems are tested on the wide area mongosystem employing phasor measurement
units. The performance of the system in termsaté datency and completeness is compared with
the currently used single input single output exyst

2. MIMO System Design Optimization
2.1. Problem formulation

The literature defines the MIMO channel system capas: “the maximum data transfer rate (bits
per second per hertz) for some acceptable levebodived signal” and it is given in bps/Hz.
Mathematically, the capacity of a MIMO channel ingv Nt transmitting antennas and Nr
receiving antennas can be written as [13]:

Cap = log, [det(INr +%HHH)] 1)

Where |, is an N-dimensional identity matrix, SNR is the mean reedi signal-to-noise ratio
in dB. H is the channel transfer matrix and thealéril on the exponent denotes the complex
conjugate transpose.

The channel matrix being random in nature, the dapaf the MIMO channel is then a
random variable. Hence, the capacity measure ahrls can be defined in various ways.
Practically, two commonly used statistical measureean ergodic capacity and outage capacity
are the most utilized. The mean capacity of a Mitt@nnel is defined as the ensemble average of
the information rate over the all the realizatiamighe channel matrix [13]. The interpretation of
the mean capacity is that in an ergodic chanmed, @an transmit the signal at the rate given by
mean capacity without errors.

Mutual coupling effect is modelled within the chahtransfer matrix written as [14-15]:

Hyc = CrGCr (2
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Where G is am,-identity matrix whose entries are identically dimaited (i.i.d) complex Gaussian
zero-mean unit variance elementsy Gnd G are the coupling matrices at the receiver and

transmitter, respectively. These matrices can Imepaved for an array of half-wavelngth dipoles
as:

C= o+ Zr)Z+ Zely) 1 ()

Where is the self impedance of the element in iswlgZ, = 73 + 42.5j Q for a/2 dipole; A is
the wavelength)Z; is the impedance of the receiver at each anteleraeat taken to be the
complex conjugate ofZ, for impedance matchindy is the identity matrix andis an N x

Nmutual impedance matrix that depends of the ragpiesitions among the dipoles as shown in
Fig.1.
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Fig 1. Relative positions of dipoles in an array (at T>Rx) for alinear array with their physical dimensions:
(a) Side-by-sideonfiguration; (b) Collinear configuration; (c) RHel-in-echelon configuratian

Each of these arrangements has its closed fornmufamthat allow the calculation of the mat#x
and hence €and G of equations (2) and (3).

The channel matrix needs to be correctly normal[2&ll There exist two kinds of normalization:
The first normalization is done on the each realizatainthe end-to-end channel gain as well
asmutual coupling matrix ki, such that [15]

”HMc”% = N, XN; 4)

Wherd|. ||4is the Frobenius norm. The limitation of this notizetion is that the disparities in the
channel gain due to antennas are eliminated. Hawthie type of normalization allows the
investigation of the correlation between the chammegrix entries and gives good indication of the
richness of the multipath environment [14-15].

The second normalization is summarized by the emuat
lGIIZ = N x N, (5)

This normalization is also performed on each rasihn of the channel matrix, but includes the
propagation channel only. This normalization alldivs investigation of the instantaneous effects
of received power changes due to mutual coupling.

A 2D rectangular array may be regarded as a cortibmaf individual linear arrays as shown in
fig. 2. The mutual impedance matrices can be eeend the rectangular array. As shown in the
example of fig. 2, the elements of the rectangateay exhibit the three configurations at the same
time. As an illustration, element 1 (in bold) is $ide-by-side configuration with the adjacent

Youcef Grainat et al (Application and Optimizati@hMIMO Communication in Wide Area Monitoring Syss®
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element(s), in collinear configuration with the raknt below and in parallel-in-echelon with the
diagonal element.

Fig 2. A 3x3rectangular array with the physical dimension

Each element has mutual coupling with all the olements in the rectangular array. Thus, they
turn out to produce a 9x9 mutual impedance matrikis example. Generally, an array withiow
elements an#! column elements results in a coupling matrix ae8INxMN. The entries of the
impedance matrix are computed based on the eqsati28,63] with respect to the relative
arrangement of the elements. The impedance matthis example can be represented as:

le Z12 Zl3

Z21 ZZZ Z23
ZSl Z32 ZS3

Z= (6)

Where the entries given above should be viewek8sBck matrices. The matrix is symmetrical
about its diagonal block elements. The diagonatlblelements represent the mutual impedance
matrices within the horizontal arrays. These amamaed based on the side by side configurations.
The off-diagonal block matrices are computed dejndn the relative positions of the elements.
As an exampleZ;,is the 3x3 impedance matrix due to the array 1 amdy 2. The diagonal
elements of this matrix represent the mutual impedalue to the elements in array 2 with those
just above them. These are in collinear configamati The other entries are computed using the
parallel-in-echelon configuration. Finally, the ettblocks are just constructed by symmetry. With
the impedance matrix computed, the coupling masgroketermined using (3) and hence the system
capacity is obtained using (1) and (2).

2.2. The whale optimization algorithm

2.2.1. Underlying background

Whale Optimization Algorithm (WOA) is a meta-hetidgsoptimization algorithm that considers
the hunting behavior of humpback whalesasmadel. This algorithm situates itself as a
differenttechnique compared to Grey Wolf Optimization [6@]imitates the hunting strategy to
catch theprey and the use of a spiral to simulate the bubbteattacking mechanism of humpback
whales.

Whales possess cells in certain areas of theindbmilar to those of human namgaindle cells.
These cells are responsible of judgment, emoti@md,social behaviors. The number of these cells
is twice compared an adult human which justifiesrthleverness. The inter-relationshipvdiales

is another amazing property. They are found to lile & stay lonely or may live in groups.
However, in most of the time, they are found inup®

Of the largest whales, one would list the humpbatiales. The most attractive feature of the
humpbackwhales is their exceptional hunting technique. Thaiasing mechanism is named
bubble-net feeding techniqf@l]. Humpback whales are keen to hunt group df a&rismall fishes

close to the ocean surface. This foraging straiepggrformed by generating specific bubbles along
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a circle or ‘9’-shaped pattern as Fig. 3 illustsati this patten, humpback whales dive down for
about 12m and then start to produce bubbles iniralspanner around the prey and swim up
towards the surface of the ocean. The latter mastmaimcludes three distinct stages: coral loop,
lobtail, and capture loop. Bubble-net feeding iscific to humpback whales. This spiral bubble-net
feeding strategy has been mathematically repreddnterder to be useful as an optimization
procedure [48].

L

R

Fig 3. Whale Bubble-Net feeding strategy

2.2.2. Presentation of the WOA:

As it is the case in all other techniques, the W&gorithm initiates with random solutions. At
each iteration, these solutions evolve byupddity positions. The customized evolution of the
solution set makes the WOA swap easily betweefoeagon and exploitation. In addition, WOA
has mainly two major internal parameters to be\&#A possess a high exploration ability owing
to the Whales position evolution process. In WQ#Agh exploitation and convergence are
overstressed. The mathematical procedure revhatstihe WOA algorithm cannot only avoid
getting trapped at local optima avoidance but essunigh convergence speed during the
optimization process.

The algorithm involves two major parts: the firginsists in prey encirclment and the spiral

position update (exploitation phase). In the secorml random Search for the prey is done
(exploration phase) [48]. The course of these phaséescribed mathematically in the following
subsections.

2.2.2.1.Prey Encirclment

In this step, humpback whale determines the pregitipn and starts the encirclment.

The initialization of search variables is striclgndom over the search-space. Hence, WOA
considers the best found position as target j[megtion. The remaining candidate solutions must
update their positions in accordance to this tangey location. This step is reptesented
mathematically as [48]:

D = |C Xpest () — X (D) (7)
X(t + 1) = Xpese (t) — A.D (8)

WhereX is the current solution seX.s:iS the best solution found so farmeans the current
iteration. The values of andCare mathematically found as:

Youcef Grainat et al (Application and Optimizat@hMIMO Communication in Wide Area Monitoring Syssg



ISSN 2722-2039 International Journal on Data Se&enc 89
Vol. 1, No. 2, December 2020, pp. 82-98

Wherer; andr, are two random vectors taken in (04)is the search direction matrix chosen to
be linearly decreasing from 2 to O throughout tloeirse of optimization. In (10)pr¢” =

|Xbest(t) - X(t)| is the distance betweéf* whale to prey; b is a constangis a random number
in the range (-1,1).

l

1—d

2d.
5 (9)

|l
QR

—
)

X(t + 1) = D" eb™s cos(2mr3) + Xpese (£) (20)

It is remarked that humpback whales swim aroundotieg around a decreasing-radius circle and
following a spiral trajectory concurrently. The meimatical model of this stage is represented as:

—— (Xpest(6) —A.D ;if p<05
XE+ 1= {;’g( ) v (1)
D[**VeP"s cos(2mr3) + Xpese (t); if p = 0.5

where p is a random number in (0, 1).

2.2.2.2 Bubble-Net Feed
The bubble-net feeding strategy was modeled baségd@mechanisms as in [48]:

= Decreasing-radius encirclement process
This is done by decreasimgfrom 2 to 0 during the progress of the optimizattask. This

step allows also the reduction in the oscillatiohd.

= Spiral update strategy
To be able to establish a spiral trajectory forr8edor prey (exploration)éf is varied in the
interval (-1,1) to search for prey. The Humpbackales chase the prey randomly with
respect to the position of each other. The pogtioinwhales are updated with respect to a
randomly chosen whale rather than that of the Wwhsle found so far. Mathematically, this
exploration is represented as:

b=[C.X,0-x®

L (12)
Xt+1)=X,t)-AD

Where X, (t) is the random location of whales. The general ¢loavt of WOA is shown in
Fig. 4.
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90 International Journal on Data Science ISSN 2723920
Vol. 1, No. 2, December 2020, pp. 82-98

Start

Initialization
of search
agents

.

Calculate
fitness values -«

.

Update whale positions No
Apply boundary N
conditions to return back : eti
whales that go outside — termina on,,
search limit criteria met’

Yes l

Display results

Fig 4. Flowchart of WOA

2.3.  Optimization Results and discussions

In this optimization task, various MIMO systems éogjng linear and rectangular antenna arrays
at Tx andRx are considered. For all the systems, the ave8ate is fixed to 20 dB. Concerning
the array inter-element separations, both horizogpacing (d) and vertical spacing (h) are
confined in the interval 0.Z5t0 2 1; where is the operating wavelength. The optiniratask for
linear arrays is performed following a similar apgech to [28].For rectangular arrays and to
reduce time and space complexities, the arraymizeither dimension does not exceed 3. Table 1
summarizes the optimizecapacity values for the 2D rectangular arrays alosty the linear
arrays. One would clearly see from Table 1 that ¢hpacity values produced kiye WOA
outperform the ones of uniform linear and 2D arrays

Various examples are dealt with to illustrate theech for optimization and to justify the
deployment of 2D arrays at Tx and Rx. For the lireggay case, it can be easily seen that the non-
uniform arrays promise better capacity values thase when uniform arrays are deployed.

As far as the 2D arrays are concerned, the fltstiation considers 2x2 rectangular arrays used at
both ends taking into account uniform and non-umily spaced cases. The results show that a
capacity improvement compared to the uniform linead 2D cases. As a matter of fact, an
improvement of 7.2% in capacity value is noticethwespect to the 3x3 uniform linear array case
as it is the largest linear array size.

Youcef Grainat et al (Application and Optimizati@hMIMO Communication in Wide Area Monitoring Syss®
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In the next example, a 3x2 rectangular array isleyeg at the transmitter with a 2x2 array at the
receiver. The results show a further capacity eodsaent than a 3-element linear array deployed at
both ends. The capacity increase is found to ¥ 8efative to the 2D uniform array.

As a third illustration, a 3x2 rectangular arrag baen deployed at the Rx and a 2x2 one at the Tx.
This case resulted in a capacity improvement of 1€8mpared to the employment of 3-
dimensional uniform linear arrays and 2.65% witspext to the uniform 2D array. As a last
example, both ends are equipped with 3x3 rectangufays. The non-uniform rectangular array
produces a capacity value that is 7% more than wisémg even a 4-dimensional uniform linear
array and 45.85% relative to using 3-element uniftinear arrays. It is worth to mention that in
the linear array case; the only the dimension clamed here is the horizontal because of the use of
the side-by-side arrangement.

On the other hand , one very important advantagiawadring the employment of non-uniform

arrays is that it is possible to obtain better menfance (in terms of capacity) with a reduced array
size. This is beneficial in the sense that the spacupied by this reduced size array is lessitian

uniform counterpart which makes it of practical .us@other remark is that the use of the two
dimensional arrays has led to a further enhanceimeoapacity witnessed by the values which
overtake the ones obtained when optimization omeedsional arrays. It can be remarked that
rectangular arrays promise a larger capacity vdtae linear arrays with even larger dimension.
3x3 rectangular arrays at both ends would perfaettebthan 4-element linear arrays. Though the
space occupied would be larger, the gain in capatikes it worth it to employ rectangular arrays.

In fact, non-uniform linear arrays promise an ia& in capacity that can go up to 20% over
uniform ones and the employment of rectangularyargroduce up to 35% over the currently
employed uniform linear arrays. One explanationhef results comes directly from equation (1)
where the channel matrid becomes highly scattered as rectangular arrayerapoyed. This
leads directly to an increase in the system capasitmore routes are available for the data to be
transmitted reliably over the MIMO channel.

Table 1. Results of capacity optimization for different MOASystems

Uniform Capacity
(reported in [32] for linear WOA Optimized

Array Type  System N Dimensions and in [28, 62] for 2D) capacity (bps/Hz)
(bps/Hz)
1 Tx: 2| Rx: 2 12.625 13.23
2 TX:2|Rx: 3 13.54 14.19
Linear
3 Tx: 3| Rx: 2 13.79 15.06
4 TxX:3|Rx: 3 17.23 17.65
5 TXx:2x2 | Rx: 2%x2 17.91 18.47
6 Tx: 3%2 | Rx: 2x2 18.34 18.73
2D
7 Tx: 2x2 | Rx: 3x2 18.47 18.95
8 Tx: 3x3 | Rx: 3x3 24.65 25.13
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3. MIMO Systems in Wide Area Monitoring
3.1. System description

The work emulates a small scale wide area mongosystem. The power system considered
in this work is the IEEE 14-bus standard system. Breviworks have shown that with one
zeroinjection at bus 7, this system can be made comedglebservable using only 3 PMUs placed
at buse®,6 and 9. Fig. 5 represents the MATLAB SIMULINKodel of the simulated system.
The raw dataollected from the three PMUs is sent through bioehSISO channel and the MIMO
channel. Taccount for the delays, the three PMUs are asstionled located at different distances
from the PDCThis is translated into different delays introducet® the set data. The three PMUs
are synchronizedsing the GPS clock. In the SISO channel, the idagant as a stream while in the
MIMO channel;data is splitted into two streams (sent at tworams) and is combined back at the
receiver. Due tahe fact that data arrives at the receiver fronfed#nt directions, maximum
combining is used tensure that the received data undergoes the minipussible error. The
MIMO channel is assumetb exhibit a Rayleigh fading which is close to igalTo assess the
performance of both systems, twerformance indicators are considered: the timelaté flow
through the channel to account for tHata latency and the bit error rate to accountdiaa
completeness. It should be noted that the statbeopower system state is estimated using the
received data from the three PMUs.

.
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Fig 5. Simulink model of SISO system
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Fig 6. Simulink model of MIMO system
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3.2. Results and discussions

Figure 5 and Figure 6 show the SISO and MIMO imm@etations of the previously defined
systems, respectively. The same amount of datanisaver the SISO and MIMO systems. At the
receiver level, the data is assessed for compleseneh reference to the sent data and latency as
measured by the SIMULINK counter for both systeiiise Total Vector Error (TVE) is taken as
measure of date completeness.

Table 2. Performance measures of both SISO and MIMO systems

Array Type  Dimensions Bus Number Delay (latency—ms) Completeness (TVE—
%)
2 1.93 1.3
Tx: 1
SISO 6 1.53 1.535
Rx: 1
9 1.03 1.515
2 4.28 0.850
Tx: 2
6 3.15 1.150
Rx: 2
9 2.19 1.050
2 4.28 0.850
Tx: 2
6 3.15 1.150
Rx: 3
MIMO 9 2.19 1.050
(Linear 2 422 0.840
arrays) >3
6 3.21 1.100
Rx: 2
9 2.31 1.020
2 4.75 0.775
Tx: 3
6 3.36 1.040
Rx: 3
9 2.34 0.975
2 4.86 0.750
Tx:2%2
6 3.76 1.050
Rx: 2x2
9 2.71 0.950
2 4.41 0.710
Tx:3x2
6 3.26 0.970
Rx: 2x2
MIMO 9 2.36 0.905
(2D arrays) 2 4.25 0.700
Tx:2%2
6 3.29 0.955
Rx: 3%2
9 2.41 0.925
2 4.64 0.625
Tx:3x3
6 3.47 0.835
Rx: 3x3
9 2.42 0.820
[ se—
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Table 2 summarizes the performance indicators étin bystems for comparison. It is clearly seen
that the MIMO system performs better than the S§g8lems in terms of data completeness. This
is due to the fact that MIMO systems are mainlyodtced to cure the impairments of the channel.
Furthermore, the signal reception at the receisetone as so to minimize the Total Vector Error
(TVE). However, the SISO system is better in teahktency as the data is a single stream and it
is traveling a single channel towards the recengte in the MIMO system, data is splitted and is
scattered in the channel and combined back aettever. Hence, the designer has to compromise
between the two performance measures when is canpeactical system design.

The IEEE C37.118.1a Standard provides the boundhefPMU reporting latency. Also, this
standard [63] specifies a much stricter Synchrophasethod and provides an error model for
vectors. The Total Vector Error (TVE) needs to kantained below 1%. The results show that the
MIMO system well respects the requirements of thadard in terms of data completeness. For the
latency, it is found that it depends on the chags@orting rate. The Standard provides two different
limits for the maximum reporting latency of the twperformance classes, depending on the
reporting rate (RR) [64]. The reporting rate thah ¢ake values of 10, 25 and 50 frames/s for a
system rated frequency of 50 Hz (lower reportingsaand, in particular, a reporting rate of 1
frame/s are possible within the PMU settings). Phelass, specific for protection applications, has

the limit (in seconds) equal t}gz)é. The M class, specific for measurement applicatidras the

limits relaxed toR7—R , thus allowing the algorithms to work with a hgglnumber ofcycles in order
to obtain a more accurate measurement result.

It should be noted that MIMO systems are introduceidnly to cope with the limited power and
bandwidth. So, a MIMO system promises more dataetput onto the communication system and
hence the system would use more data and incogpamany applications simultaneously. In a
wide area system, data can be used for monitodagtrol and protection using the same data
package. Furthermore, the study made here aimigfaighting the promising applicability of the
MIMO communication systems into mart grid applioas. A complete design of the MIMO
system itself must be done to improve further théole system. This includes the
transmitter/Receiver architectures, the channelatsognd the modulation/coding schemes. Hence,
the Smart grid application and the MIMO communigatsystem constitute a complex system that
needs to be optimized for performance at all levels

4. Conclusion

The communication infrastructure is considered &wehamajor role in the success of smart
gridimplementation campaigns. The purpose of thigkwas to illustrate the potential benefits that
acommunication system designer within the framevafr&martgrid would gain when opting for a
MIMOcommunication link. It has been shown that thie sameapplication, a MIMO system
outperforms its SISOcounterpart in terms of datengleteness which is a majorissue as all
decisions and control actions resultsfrom correatadreception. Also, It has been that the
MIMOsystem is relatively sluggish compared to tl&SIsystem. This issue can be addressed by
consideringmore details of the MIMO system desi@m theother hand, the MIMO system
promises higher data capacity tobe injected ineosifstem which makes itbeneficial as many smart
grid applications can be consideredsimultaneousighould be noted that the smartgrid system
using MIMO communication is very complex andopédmswindow to an optimization task thathas
to be done on both the application itself and tH® communication system.
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Nomenclature

Channel capacitybps/Hz

Signal to Noise Ratiodimensionless
Nbr of elements in the transmitter
Nbr of elements in the reciever

The impedence Ohm

Total Vector Error %

Greek letters

A The wavelength m
Subscripts

bps/Hz Bit per second per Hertz.
ms Milliseconds.

m Meter.

Nbr Number

Acknowledgment

This work has been conducted under the nationalareb projeciN°:A01L07UN350120180002
Supported by “la Direction Générale de la Recher@mentifigueet du Développement
Technologique (DGRSDT)” inAlgeria. The authors wbulike also to thank Prof. Hamid
BENTARZI; the head of the signals and systems kaiooy forhis support towards the achievement
of this work.

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]
(9]
(10]

(11]

(12]

(13]

References

Kuzlu, M.; Pipattanasomporn, M.;Saifur, R.Communicationnetwork requirements for major
smartgrid applications in HAN, NAN and WARomputer Networks 2014, 67, 74-88.

Miao, L.; Wei, G.; Fang, X.; Risheng, The strategy of the voltage control in smart griaséd onmodern
controlmethod and FPGA. Proceedings of 34th Chinese Co@waference (CCCR015,8964-8968.

Gellings, C. W.The concept of demand-side management for elegtilities. Proceedings of IEEEL985,
73(10),1468-1470.

Tsai, C.W.; Pelov, A.; Chiang, M.C.; Yang, C.-S.; HornigP. Computational awareness for smart grid:
areview.Int. J. Mach. Learn. Cybern. 2014, 5(1),151-163.

Farhangi, HThe path of the smart gridEEE Power Energy Mag. 2010,8(1),18-28.

Park, N.; Kim, M Implementation of load management applicatiortesysusing smart grid privacpolicy
in energy management service environmehist. Comput. 2014,17(3), 653—664.

Recioui, A.; Bentarzi, H.; Tsebia, MPMU Deployment in Power System Oscillation Morikgr
In Sustainableviation 2014, 312: 322.

Momoh, J.Smart Grid:Fundamentals of Design and Analy2&12.
C37.118-2005, IEEE Standard for SynchrophasorsdarelP Systems, 2006.

Dolezilek, D.; Fischer, N.; Schloss, Rnprovements in Synchronous Wide-Area Data AcduisiDesign
and Deployment for TelecontrolandTeleprotection
2012. <https://www.selinc.com/WorkAre@ownloadAsset.aspx?id=99365>.

Yan, Y., Qian, Y., Sharif H.; Tipper, D.A Survey on Smart Grid Communication
Infrastructures: Motivations, Requirements and Challenge(EEE Communications Surveys & Tutorials

2013,15(1), 5-2®mOI: 10.1109/SURV.2012.021312.00034.

Wang, W.; Xu, Y.; Khanna, MA survey on the communication architecturesnmart grid Comput.
Netw 2011, 55, 3604—3629.

Khan, R.H.; Khan, J.YA comprehensive review of the application ebtaristics and traffic
requirements of a smart grid communications netwdCliomput. Netw 20137, 825-845.

Youcef Grainat et al (Application and Optimizat@ihMIMO Communication in Wide Area Monitoring Sység



96 International Journal on Data Science ISSN 2722920
Vol. 1, No. 2, December 2020, pp. 82-98

[14] Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buxe C.; Cecati, C.; Hancke, G.PSmart
grid technologiescommunication technologies and standal@EE Trans. Indu. Inform. 2011, 7 (4), 529-539.

[15] Fan, Z.; Kulkarni, P.; Gormus, S.; Efthymiou, C.;légridis, G.; Sooriyabandara, M.; Zhu, ZLambotharan,
S.; Chin, W. Smart grid communications: overview of researcbhallenges, solutions, and
standardizatioractivities IEEE Commun. Surv. Tutorials 2012, 99, 1-8.

[16] S. Galli, A. Scaglione, Z. WangPower line communications and the smart grid, in:
IEEE International Conference Smart Grid Communications (SmadGomm) 2010, pp303—-308.

[17] Pipattanasomporn, M.; Kuzlu, M.; Rahman, emand response implementation in a home are@vork:
a conceptual hardware architecturdn IEEE Innovative Smart Grid Technologi@éSGT) Conference2012,
1-8.

[18] Wietfeld, C.; Georg, H.; Groening, S.; Lewandowskg.; Mueller, C.; Schmutzler, JWireless
M2M communication networks for smart grid applicationsin Sustainable Wireless Technologies
(EuropearWireless), 2011, 1-7.

[19] Aravinthan, V.; Karimi, B.; Namboodiri, V.; JeweNV. Wireless communication for smart grégbplications
at distribution level -feasibility and requirements IEEE Power and Energypociety General Meeting
2011,1-8.

[20] Dong, Y.; Kezunovic, M. Communication infrastructure for emerging transnossievel smart
grid applicationsIn IEEE Power and Energy Society General Mee2iogl, 1-7.

[21] Jianfeng, L.; Defu, J.; Xiaofei, ZDOA Estimation Based on Combined Unitary ESPRITCoprime
MIMO Radar. IEEE Communications Letters 2017,21(1), 96-99.

[22] Said, M.M.; Yahia, M.M.A. On cross correlation in antenna arrays with applioas to spatial
diversityandMIMO systemslEEE Transactions on Antennas and Propagatiob,Z&R(4), 1798 — 1810.

[23] Sebastien, C.; Said, M.M.; Yahia, M.M.AA generalized methodology for obtaining antennaawrsurface
current distributions with optimum cross-correlation perfante for MIMO and spatial diversity
applications IEEE Antennas and Wireless Propagation Let8d$5,14, 1451 — 1454.

[24] Wojciech, J. K.Space diversity parameters of MIMO systems smakrera array for mobile terminaln
Proc.European Conference on Antennas and PropagatiomsD8witzerland 2016, 1-4.

[25] Foschini, G. J.; Gans, M. @n Limits of Wireless Communications in a Fading iEmment WherUsing
Multiple AntennasWireless Personal Communications 1998, 6(3), 34.-

[26] Recioui, A.; Bentarzi, H. Genetic Algorithm based MIMO capacity enhancement i
spatially  correlated channels including Mutual Couplin@vireless Personal communications
2012,63(3), 689-701.

[27] Recioui, A.; Bentarzi, H.Capacity Optimization of MIMO Wireless Communicati®@ystems Using
a Hybrid Genetic-Taguchi AlgorithmWireless Personal Communications 2013, 71(2), 1013®.

[28] Recioui, A.; Bentarzi, H. Application of a Galaxy-Based Search Algorithm tolM® System
CapacityOptimization.Arabian Journal for Science and Engineering 2@1@9), 3407-3414.

[29] Yuan, Q.; Chen, Q.; Sawaya, KRerformance of adaptive array antenna with arbifrageometry in
thepresenceof mutual couplinglEEE Trans. Antennas Propag. 2006, 54(7), 199619

[30] Wang, B; Chang, Y.; Sun, YPerformance of the large-scale adaptive arrayeanas in the presencs
mutualcoupling IEEE Trans. Antennas Propag. 2016, 64(6), 2235622

[31] Wu, Y.; Bergmans, J. W. M.; Attallah, &ffects of antenna correlation and mutual dogp on the
carrier frequency offset estimation in MIMO systertis Int. Conf. Wireless CommuriNetw. Mobile
Computing(WiCOM), Chengdu, China, 23-25 Sept. 2010.

[32] Lu, S.; Hui, H. T. ;Bialkowski, M. E. et aTlhe effect of antenna mutual coupling on chamséimation
of MIMO-OFDM systemdEEE Antennas Propag. Society. In Int. Symp., élolu, HI, Jun2007, 1-4.

[33] Lui, H. S.; Hui, H. TMutual coupling compensation for direction-of-aalv estimations usinthe receiving-
mutual impedance methokht. J. Antennas Propag. 2010, 1-7.

[34] Pozar, D. M A relation between the active input impedance #redactive element pattern of phased
array. [IEEE Trans. Antennas Propag. 2003, 51(9), 24&%24

Youcef Grainat et al (Application and Optimizat@hMIMO Communication in Wide Area Monitoring Syssg



ISSN 2722-2039 International Journal on Data S&enc 97

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

(45]

[46]

[47]

(48]
[49]

(50]

(51]

(52]

(53]

(54]

[55]

[56]

[57]

Vol. 1, No. 2, December 2020, pp. 82-98

Aumann, H. M.;Fenn, A. J.;Willwerth, F. ®hased array antenna calibration and patteprediction
using mutual coupling measurementEEE Trans. Antennas Propag. 1989, 37(7), 844-850

Wei, H.; Wang, D.; Zhu, H. et alMutual coupling calibration for multiuser massive IND
systemslEEE Trans.WirelessCommun. 2016,15(1), 606-619.

Recioui, A.; Azrar, A.Use of Genetic Algorithms in Linear and Planar Amta Microwave And
Optical Technology Letters 2007, 49(7).

Recioui, A.; Azrar, A.; Bentarzi, H., Dehmas, M.; dabl M. Synthesis of Linear Arrays with
Sidelobéevel Reduction Constraint using Genetic Algorithmisiternational journal of microwave and

opticaltechnology2008, 3(5).

Khodier, M. M.; Christodoulou, C. GLinear array geometry synthesis with minimum dolee leveland
null control using particle swarm optimizatiolEEE Trans. on Antennas Propagat. 2005, 528j4-2679.

Recioui, A.Sidelobe Level Reduction in Linear Array PattermtBgsis Using Particle Swar@ptimization J.
of Optimization Theory and Applications 2012, 153¢97-512. DON0.1007/s10957-011-9953-9.

Dib, N.; Goudos, S.; Muhsen, .H Application of taguchi's optimization method andelf-
adaptivedifferentialevolution to the synthesis of linear antenna arr@I&R 2010, 102, 159-180.

Recioui, A. Optimization of Antenna Arrays Using Different $#gies Based on Taguchi
Method ArabianJournal for Science and Engineering 2014, 39(%;984.

Durrani, S.; Bialkowski, M. EEffect of mutual coupling on the interferenceeotion capabilities ofinear
andcircular arrays in CDMA system$EEE Trans. Antennas Propagat. 2004,52(4),11334.1

Piazza, D.; Kirsch, N. J.; Forenza, A.; Heath, R.; Wandekar, K. R.Design and evaluation of
areconfigurableantenna array for MIMO systemi&EEE trans. Anten. Propag. 2008, 56(3).

Lozano, A.; Tulino, A. M.Capacity of multipletransmit multiple receive antanarchitectures IEEE Trans.
Inf. Theory 2002,48(12), 3117-3127.

Oyman, O.; Nabar, R. U.; Bolcskei, H.; Paulraj, A. Tight lower bounds on the ergodic capacity
of Rayleighfading MIMO channelsin Proc. GLOBECOM, Taipei, Taiwan, R.O.C., Nov. 200272-1176.

Du, J.; Li, Y. Optimization of antenna configuration for MIMO @sts IEEE transactions
on Communication005,53(9), 1451-1454.

Mirjalili, S.; Lewis, A. The whale optimization algorithridvances in Engineering Software 2016, 95,67.

Kaur, G.; Arora, S. Chaotic whale optimization algorithm.Journal of Computational Design
andEngineering2017.

Ling, Y.; Zhou, Y.; Luo, Q. Lévy flight trajectory-based whale optimization algorithnfior
global optimization IEEE Access 2017, 5, 6168-6186.

Sun, Y., Wang, X.; Chen, Y.; Liu, Z. Anodified whale optimization algorithm folarge-scale
global optimization problemsExpert Systems with Applications 2018, 114, 553~

Bentouati, B. ; Chaib, L. ;Chettih,. @ hybrid whale algorithm and pattern search tecjuei fooptimalpower
flow problem In 2016 8th International Conference on Blbdg, Identification and Control
(ICMIC), Algiers, 1048-1053.

Findler, N. S. V.; Lo, C.; Lo, R.Pattern search for optimization. Mathematics andmpaters in
Simulatiori987,29(1), 41-50.

Mafarja, M. M.;Mirjalili, S. Hybrid Whale Optimization Algorithm with simulatethnealing for feature
selectionNeurocomputing 2017, 1-11.

Aljarah, I.; Faris, H.; Mirjalili, S. Optimizing connection weights in neural networks gsithe
whaleoptimizationalgorithm Soft Computing 2018, 22(1).

Aziz, M. A. E.; Ewees, A. A. ; Ella, A Whale Optimization Algorithm and Moth-Flame
Optimization for multilevel thresholding image segmentatidxpert Systems with Applications 2017,
83,242-256.

Ben oualidMedani, K.; Sayah, S.;Bekrar, YWhale optimization algorithm based optimal reactpewer
dispatch:A case study of the Algerian power systEiactric Power Systems Research 2018, 685-705.

Youcef Grainat et al (Application and Optimizat@ihMIMO Communication in Wide Area Monitoring Sység



98

(58]

(59]

(60]
(61]

(62]

(63]

(64]

International Journal on Data Science ISSN 2723920
Vol. 1, No. 2, December 2020, pp. 82-98

Yu, Y. ; Wang, H. ; Li, N. ; Su, Z. ; Wu, JAutomatic carrier landing system based on
active disturbancerejection control with a novel parameters opten. Aerospace Science af@chnology
2017, 69, 149160.

Wu, J.; Wang, H.; Li, N.; Yao, P.; Huang, Y.; Yanfl. Path planning for solar-powered UAV in
urbanenvironmentNeurocomputing 2018, 275, 2055—-2065.

Mirjalili S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizerAdvEngSoftw. 2014, 69, 46—61.

Watkins, W.A.; Schevil, W.E. Aerial observation of feeding behavior in four laie whales
Eubalaenglacialis, Balaenoptera borealis, Megapteranovaean-gliae, andlaefapteraphysalus. J
Mammal1979,155-63.

Recioui, A. Use of Spiral Optimization Technique to Enhance theapacity of MIMO
CommunicatiorSystem$&Employing One and Two-Dimensional Array Antenrasinternational conference on
appliedanalysis ananathematical modelling, Yildiz Technical universitgtanbul, Turkey, June 8-12, 2015.

A. Phadke and R. de Moraedhe Wide World of Wide-aredeasurement. Power and Energy
Magazine IEEE 6(5):52—-65, Sep-Oct 2008. ISSN 1540-7977. #16i1109/MPE.2008.927476.

V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. BuexellC. Cecati, G.P. HanckeSmart grid
technologiescommunication technologies and standal@EE TransIndu. Inform. 7 (4) (2011) 529-539.

Youcef Grainat et al (Application and Optimizat@hMIMO Communication in Wide Area Monitoring Syssg



