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1. Introduction

Deep neural networks have bested notable benchmarks across computer vision, reinforcement 
learning, speech recognition, and natural language processing. However, neural networks still have 
deficiencies. For instance, they have a penchant to over-fit, and large data sets and careful 

regularization are needed to combat this tendency. Artificial Neural Networks use a variety of 

architectures. This study centers on the Multi-Layer Perceptron (MLP) which is the most 
commonly used type of ANN. The MLP is also known as the Feed-Forward Network (FFN). MLP 

has been found to be powerful in terms of model precision in the usage of homogeneous transfer 

functions (TFs), especially with complex or large data set. The choice of MLP is because it is the 

only ANN type that allows for statistical inference.   

Blundell, C. et al (2015) introduced a new, efficient, principled and back propagation-compatible 

algorithm for learning distribution, a probability on the weights of a neural network, called Bayes 

by Back prop. Lee et al.(2017) derived the exact equivalence between infinitely wide deep 
networks and GPs. Matthews et al. , (2018) studied the relationship between random, wide, fully 
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Neural networks have been very important models across computer 
vision, natural language processing, speech and image recognition, 
aircraft safety and many more. It uses a variety of architectures that 
centres on the Multi-Layer Perceptron (MLP) which is the most 
commonly used type of Artificial Neural Network. MLP has been found 
to be good in terms of model precision in the usage of Homogenous 
Transfer/activation Functions (HTFs), especially with large data set. 
Based on the preliminary investigations of ranking of transfer functions 
by error variance (Udomboso, 2014), three HTFs are considered to 
perform better than other HTFs in prediction. These HTFs are the 
Hyperbolic Tangent Transfer functions (TANH), Hyperbolic Tangent 
Sigmoid Transfer function (TANSIG) and the Symmetric Saturating 
Linear Transfer Function (SSLTF). In this work, the performance of two 
Heterogeneous Transfer Functions (HETFs), which came as a result of 
the convolution of the three best HTFs, were compared with the 
performance of the three above listed HTFs. The hidden neurons used 
are 2, 5 and 10, while the sample sizes include 50, 100, 200, 500 and 
1000. The data were divided into training sets of 90, 80 and 70 
respectively. The results showed that the HETFs performed better in 
terms of the forecast using Mean Square Error (MSE), Mean Absolute 
Error (MAE) and Test Error as the forecast prediction criteria. 
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connected, feed forward networks with more than one hidden layer and Gaussian processes with a 

recursive kernel definition. 

Garriga-Alonso et al. (2019) showed that the output of a (residual) CNN with an appropriate prior 

over the weights and biases is a GP in the limit of infinitely many convolutional filters for dense 
networks. Laurence Aitchison (2020) They argued that getting Bayesian neural networks to 

perform comparably to artificially reduce uncertainty using a ”tempered” or ”cold” posterior. This 

is extremely concerning if the prior is accurate. 

Wenzel et al.(2020) demonstrated through careful MCMC sampling that the posterior predictive 

induced by the Bayes posterior yields systematically worse predictions compared to simpler 

methods including point estimates obtained from SGD. Dusenberry et al. (2020) proposed a rank-1 
parameterization of BNNs, where each weight matrix involves only a distribution on a rank-1 

subspace. Garriga-Alonso et al. (2021) Correlating the weights maintains the correlations in the 

activations. Varying the amount of correlation interpolates between independent-weight limits and 

mean-pooling. Hafner, D. etal (2020) proposed noise contrastive priors (NCPs) to obtain reliable 
uncertainty estimates. The key idea is to train the model to output high uncertainty for data points 

outside of the training distribution. Tim Pearce et al.(2020) designed a simple, flexible approach to 

creating expressive priors in Gaussian process (GP) models makes new kernels from a combination 
of basic kernels, e.g. summing a periodic and linear kernel can capture seasonal variation with a 

long term trend.  

Cui et al. (2021) proposed a new joint prior over the local (i.e., feature-specific) scale parameters 
that encodes knowledge about feature sparsity, and a Stein gradient optimization to tune the hyper 

parameters in such a way that the distribution induced on the model’s PVE matches the prior 

distribution. Vincent Fortuin et al. (2021) studied summary statistics of neural network weights in 

different networks trained using SGD. They found that fully connected networks (FCNNs) display 
heavy tailed weight distributions, while convolutional neural network (CNN) weights display 

strong spatial correlations. 

The aim of this study is to compare the performance of ANN using heterogeneous transfer 
functions and homogenous transfer Functions. The rest of this paper are the methodology, data 

simulation for the study, presentation of result and conclusion. 

2. Methodology

2.1.  Artificial Neural Networks (ANNs)

As simple statistical models, ANNs have been useful to many functions, such as forecasting, curve-

fitting, and regression in the fields of engineering, earth sciences, medicine, hydrology, etc. ANN 
models study data and carry out jobs such as classification or forecasting. The nature of the data is 

used to assess the network model in the building procedure, unlike other models that use before 

postulations. ANN arrangements are structured in levels positioned as input, hidden, and output 

levels. Within every level, there are interconnected elements known as neurons. Weights are the 
essential variables of the ANN models used to resolve a hitch. The total of the weighted inputs and 

the bias terms are entered into an activation function that is executed to avert the output from 

getting bigger. Frequently executed sets of activation functions include the sigmoid, hyperbolic 
tangent, and the rectified linear unit (ReLU) functions. 

The statistics neural network model is given as 

 (1) 

Output = sum (weights*inputs) + bias (2)
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Where y is the dependent variable,  = ( ) is a vector of independent variables, 

where w =   is the network weight and ei = is the stochastic term that is normally distributed (that 

is, e ~ N(0, )). 

 

2.2.       ANN Model Development 

This study utilized a multilayer perceptron (MLP) feed-forward network. The multilayer perceptron 
reduced the error between the ANN model outputs and observed values by renewing the weights 

between each node. The choice of the hidden nodes in the complicated area in ANN modelling. To 

date, there are no precise strategies for matters such as how many hidden layers and hidden nodes 

should be integrated into an ANN model. Thus, a trial-and-error method was utilized to find the 
best number of nodes for the hidden layer. In this study, the data was split into training and test 

sets, training set and testing set (70%, 80%, 90%), hidden layers (2,5,10) and activation functions 

(sigmoid, hyperbolic tangent and rectified linear unit). Thus, the results obtained in the results 
section are the estimations of the performance of the ANN on the test data. All input data are 

normalized using the following equations:  

       (3) 

       (4) 

Where  is the observed value,  and are respectively the minimum and maximum 
data in the input time series. 

 

2.3.         Activation functions 

The perception of the handling of neural networks is mainly attained through the activation 
functions. An activation function is a mathematical function that changes the input variable to an 

output variable. In default of activation functions, the operation of neural networks will be similar 

to linear functions. A linear function is a function where the output variable is exactly related to the 

input variable.  

Nevertheless, most of the limitations the neural networks try to unravel are nonlinear and 

complicated. The activation functions are utilized to attain the nonlinearity. Nonlinear functions are 

high-level polynomial functions. The graph of a nonlinear function is curved and combines the 
complication element. Activation functions provide the nonlinearity element to neural networks 

and render them accurate universal function approximations. 

2.3.1. Sigmoid 

The sigmoid function is a mathematical function that gives a sigmoidal curve; a characteristic curve 
for its S shape. This is the oldest and frequently used activation function. This compresses the input 

to any value between 0 and 1 and makes the model logistic. This function is known as a special 

case of logistic function defined by the following formula: 

         (5) 

2.3.2. Hyperbolic tangent 

Another common and mostly utilized activation function is the tanh function. This is a nonlinear 

function, characterized in the scale of values (-1, 1). One thing to make clear is that the gradient is 
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better for tanh than sigmoid (the derivatives are steeper). Settling between sigmoid and tanh will be 

based on the gradient strength prerequisite. Like the sigmoid, tanh also has the missing slope 

constraint. The function is specified by the formula: 

f(x) = tanh (x)          (6)  

This looks like sigmoid; it is a scaled sigmoid function. 

 

2.3.3. Rectified Linear Unit 

Rectified Linear Unit (ReLU) is a predominantly utilized activation function. It is a simple 

specification and has merits over the other functions. The function is defined by the following 

formula: 

f(x) = 0 when x  0 

        x when x  = 0         (7)  

The scale of the result is between 0 and infinity. RELU finds usage in computer vision and speech 

identification using deep neural networks.  

 

2.4.         Artificial Neural Network with Heterogeneous Transfer Function 

The hardware was provided for the training process depicted in table 1. GPU was necessary in the 

training process to speed up the time process for eye modelling. Tensorflow-GPU version 1.12 was 

selected to handle the training process with Keras support. Beside the Tensorflow-GPU, OpenCV 
was also installed to run the model in real time application using webcam.   

The model below gives a neural network model with a homogenous transfer function 

F(x, w) = ]             (8) 

Where g (.) is the transfer functions, which makes the equation (2.8) above is called an 

Homogenous SNN (HSNN) model. Given a convoluted form of the artificial neural network model 

given above, using the product convolution, we have 

F(x, w) = ]            (9) 

Where (.) and (.) are transfer functions, which are HTFs but combined in equation 3 above to 

make a heterogeneous Transfer function (HETFs). Equation (2.9) above is called the 
Heterogeneous SNN (HETSNN) model. 

 

2.5.         Heterogeneous Transfer Functions (HETFs) 

Based on the above listed best HTFs, two convoluted HETFs were derived using the principle of 

convolution i.e. g1(.) x g2(.) such that the newly derived transfer functions are also a probability 
density function. These two HETFs below are derived using the convolution of Symmetric 

Saturating Linear Transfer Function and the Hyperbolic Tangent Transfer Function (SSLHT) and 

the convolution of the Symmetric Saturating Linear Transfer Function and the Hyperbolic Tangent 
Sigmoid Transfer Function (SSLHTS) (Udomboso, 2014). 

The summary of the derived function is given as: 

(1) Symmetric Saturating Linear and Hyperbolic Tangent (SSLHT) 

     For    -1 < x < 1 
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(2) Symmetric Saturating Linear and Hyperbolic Tangent Sigmoid (SSLHTS) 

     For    -1 < x < 1 

Where p is the number of parameters. 

 

2.6.         Data Simulation for the Study 

The data to be used for this study was generated using the model below: 

y = x + 0.3sin(2 (x + ei))+ei              (10) 

Where ei ~ N(0,0.02) and x ~N(0.1). 

The results are based on the prediction and model selection criterion given at different levels of 

hidden neurons at different sample sizes. The hidden neurons used are 2, 5 and 10, while the 

sample sizes include 50, 100, 200, 500 and 1000. The data was also divided into training and 

testing sets of 90 and 10, 80 and 20 and 70 and 30 respectively. 

 

2.7.         Prediction Selection Criteria 

The prediction selection criteria used in this work are the Mean Square Error (MSE), Mean 

Absolute Error (MAE) and the Test Error. Mean square error measures the average of the squares 
of the errors or the average squared between the estimated values and the actual value. 

Mathematically, it can be represented as: 

MSE =  

Mean Absolute Error (MAE) is a measure of prediction accuracy. It is the measure of absolute 

error between the forecast value and the true value. Mathematically, it can be written as: 

MAE =   

Test Error is used when a model is to be validated. When we calculate the error on data which was 

unknown in the training phase, we are calculating the test error. 

 

3. Results and Discussion 

This present the analyses of the performance of ANN using homogenous transfer functions and 

heterogeneous transfer functions. Tables 1 to 3 below shows the forecast performance measures 
results for the simulated data using the mean square error, mean absolute error and the test error 

respectively. The tables show the performance of the transfer functions (HTFs and HETFs) under 

different training set numbers (70%, 80% and 90%) and under different hidden neurons (2, 5, and 

10) under different activation functions and at different sample sizes. The results obtained from 
Tables 1 to 3 reflects the performance of the activation functions, for three the homogenous transfer 

functions and two heterogeneous transfer function. Considering the activation function, RELU 

produced majority of the lowest mean square errors (MSEs), mean absolute error (MAEs) and the 
test error among the homogenous transfer functions while the two heterogeneous transfer functions 

produced lowest mean square error, mean absolute error and the test error compared to the 

homogenous transfer functions considered which make them better in prediction. It can also be 
seen from the results that, as the sample size increases, the value of the mean square error 

decreases. 
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Fig. 1 Distribution of performance of the activation functions using MSE 

 

 

Fig. 2  Distribution of performance of the activation functions using MAE 
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Fig. 3  Distribution of performance of the activation functions using Test Error 
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Table 1.  Forecast Performance using MSE 

When n=50 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.04536065 0.04564356 0.0492185 0.04089795 0.04824148 0.04872315 0.04601659 0.04480303 0.04618498 

Sigmoid 0.05656073 0.05022231 0.04483313 0.05572514 0.0575734 0.05603065 0.06303656 0.05302699 0.05153979 

Hyperbolic tangent 0.0484365 0.0480776 0.0451661 0.04988979 0.05074671 0.05414198 0.04942139 0.05035907 0.04780267 

SSLHT 0.03796254 0.03120936 0.03477873 0.03650677 0.03219296 0.02039492 0.0331542 0.03995348 0.03773181 

SSLHTS 0.04369801 0.04369801 0.0140745 0.00898904 0.00898904 0.00898904 0.00701129 0.00701129 0.00701129 

When n=100 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.0405356 0.04843695 0.04852811 0.0550651 0.05122153 0.0512218 1.037169 0.04466014 0.04486319 

sigmoid 0.04143232 0.04887886 0.0481793 0.06226006 0.04868746 0.05041625 0.04517857 0.04503382 0.0424108 

Hyperbolic tangent 0.04801389 0.04907249 0.04781495 0.05205736 0.04831357 0.05047595 0.04772446 0.0495061 0.04437785 

SSLHT 0.4825532 0.04549503 0.04182575 0.04366129 0.04229004 0.04124163 0.04100606 0.04520576 0.0237550 

SSLHTS 0.00137821 0.00137821 0.00137821 0.00139706 0.00139706 0.00139706 0.001655153 0.00165515 0.00165515 

When n=200 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.04283649 0.04282593 0.0428457 0.0461478 0.04095318 0.04098674 0.8261478 0.04095318 0.04098674 

Sigmoid 0.04592385 0.04522716 0.04638254 0.04211514 0.04236094 0.04076459 0.03885812 0.03815169 0.03722988 

Hyperbolic tangent 0.04251323 0.04545386 0.04758545 0.04185362 0.03908446 0.04039074 0.03795205 0.03717498 0.03710731 

SSLHT 0.05345796 0.04138555 0.04157519 0.04254912 0.03990308 0.0430479 0.0308365 0.0310234 0.0374535 

SSLHTS 0.00192205 0.00192205 0.00192205 0.00163919 0.00163919 0.00163919 0.00205974 0.02059741 0.02059741 

When n=500 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.04226684 0.04706437 0.04697518 0.05910555 0.04706283 0.05580163 0.05096383 0.0682076 0.0509657 

sigmoid 0.04756158 0.04742588 0.04681848 0.05169109 0.04871218 0.05151577 0.05112607 0.05182675 0.05082465 

Hyperbolic tangent 0.04882288 0.04756547 0.04841315 0.05337090 0.05033169 0.0527485 0.05185673 0.0688195 0.05189598 

SSLHT 0.05317327 0.04940695 0.06562853 0.05453931 0.0423414 0.04676842 0.0483453 0.06449127 0.05288543 

SSLHTS 0.003122762 0.003122762 0.003122762 0.003649035 0.003649035 0.003649035 0.003565195 0.003565195 0.003565195 

When 

n=1000 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.04737156 0.0473454 0.04733953 0.04664931 0.04664866 0.0466491 0.05072219 0.05069983 0.05072245 

sigmoid 0.04970722 0.04864827 0.04884184 0.04895137 0.04704777 0.04681032 0.05151714 0.05199655 0.05220437 

Hyperbolic tangent 0.0479398 0.04760941 0.04896131 0.04791326 0.04817565 0.04765268 0.05220662 0.05257291 0.05031869 

SSLHT 0.0479398 0.04733635 0.04733035 0.04736291 0.04633459 0.04850382 0.02210718 0.05062815 0.05180198 

SSLHTS 0.04789064 0.04789064 0.04789064 0.04738028 0.04738028 0.04738028 0.05180198 0.05180198 0.05180198 
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Table 2. Forecast Performance using MAE 

When n=50 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

 (2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.01084481 0.01583126 0.03362715 0.01033206 0.01431494 0.01230493 0.07415554 0.05585283 0.06902516 

sigmoid 0.01913261 0.05988184 0.01294782 0.02172133 0.01963479 0.02395511 0.08484791 0.05532735 0.05746984 

Hyperbolic tangent 0.02443442 0.01557737 0.0158182 0.08705485 0.0137796 0.01161389 0.06070249 0.05248329 0.05708698 

SSLHT 0.00318743 0.004393331 0.003620382 0.003599549 0.003123241 0.004051393 0.001471838 0.006308208 0.006316871 

SSLHTS 0.001589913 0.001589913 0.001782391 0.001148536 0.001148536 0.001148536 0.00983228 0.00983228 0.00983228 

When n=100 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

 (2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.279912 0.02808561 0.02877417 0.2503624 0.07158606 0.07178141 0.5304296 0.07728433 0.07624355 

sigmoid 0.02858596 0.03014854 0.02917777 0.07906109 0.07510564 0.07556928 0.08843629 0.09180876 0.09133624 

Hyperbolic tangent 0.02860824 0.02876265 0.02917051 0.07348370 0.07439191 0.07323994 0.07688096 0.06795592 0.0780563 

SSLHT 0.002428043 0.006019314 0.005896373 0.007284321 0.006863603 0.007715116 0.005123343 0.00779468 0.001477266 

SSLHTS 0.002834303 0.002834303 0.002834303 0.001414445 0.001414445 0.001414445 0.005339173 0.005339173 0.005339173 

When n=200 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

 (2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.01555635 0.01592215 0.01561166 0.1504472 0.03425668 0.03454515 0.1504472 0.03425668 0.03454515 

sigmoid 0.01506126 0.01600192 0.01924248 0.03271113 0.03198777 0.04034036 0.02779946 0.02715333 0.02726782 

Hyperbolic tangent 0.01227057 0.01887132 0.02146642 0.03277947 0.03601551 0.03803863 0.03116556 0.02906871 0.02816523 

SSLHT 0.00262705 0.00222336 0.00252556 0.00492054 0.00376587 0.00301193 0.00125838 0.00355436 0.00288313 

SSLHTS 0.00341757 0.00341757 0.00341757 0.00352640 0.00352640 0.00352640 0.00355436 0.00355436 0.00355436 

When n=500 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

 (2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.07049311 0.02869529 0.02942641 0.03408281 0.01640909 0.09467976 0.07084378 0.01809918 0.07092672 

sigmoid 0.07970243 0.08534412 0.05957753 0.03398892 0.02442058 0.03394872 0.02853253 0.007577316 0.06930484 

Hyperbolic tangent 0.03722658 0.01050819 0.01255912 0.15214931 0.02551606 0.04395881 0.05523077 0.02457272 0.05645807 

SSLHT 0.008363895 0.002497509 0.001445503 0.002883166 0.001324457 0.004179057 0.00213211 0.002030934 0.00929881 

SSLHTS 0.008970462 0.008970462 0.008970462 0.008247808 0.008247808 0.008247808 0.00931740 0.009317405 0.009317405 

When n=1000 

Activation functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

 (2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

RELU 0.01391879 0.01362747 0.01378003 0.09982207 0.09948592 0.09971453 0.03724168 0.03702656 0.03723718 

sigmoid 0.08474242 0.01070048 0.01165833 0.02439061 0.01111752 0.09931213 0.03453425 0.03540605 0.03602913 

Hyperbolic tangent 0.01090115 0.01198944 0.01398887 0.07063271 0.07923062 0.08239547 0.03609895 0.03606323 0.03867038 

SSLHT 0.001090115 0.001779952 0.001684105 0.00201341 0.00131349 0.00526225 0.007921446 0.003855935 0.003636896 

SSLHTS 0.001346109 0.001346109 0.001346109 0.00109871 0.00109871 0.00109871 0.003636896 0.003636896 0.003636896 
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Table 3. Forecast Performance using Test Error 

When n=50 

Activation 

functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 
Hidden Neuron (5) 

Hidden Neuron 

 (10) 

RELU 1.004461 1.017161 1.193877 1.092693 1.067767 1.074861 1.455757 1.597596 1.473599 

sigmoid 0.9899312 1.012857 1.007863 1.1124 1.100785 1.112796 1.406555 1.609739 1.592005 

Hyperbolic tangent 1.031811 1.014247 1.022047 1.083076 1.08429 1.121298 1.551501 1.603778 1.57132 

SSLHT 0.9706997 0.9571166 1.070951 1.10896 1.015166 1.012562 1.107582 1.519653 1.540541 

SSLHTS 0.980448 0.931562 1.013156 1.018861 1.018861 1.018861 1.293583 1.293583 1.293583 

When n=100 

Activation 

functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 
Hidden Neuron (5) 

Hidden Neuron 

 (10) 

RELU 0.5154035 0.5654503 0.5688913 0.2807331 0.6337495 0.6333759 0.3413968 0.6446217 0.6470433 

sigmoid 0.5943388 0.560711 0.5434544 0.7121132 0.6041872 0.6278305 0.6355053 0.626227 0.6092434 

Hyperbolic tangent 0.5597554 0.5750345 0.5523297 0.6459385 0.5994198 0.631463 0.6690408 0.683816 0.642954 

SSLHT 0.4143074 0.4591691 0.4084604 0.4705492 0.4233827 0.4410327 0.4191503 0.4141392 0.4675494 

SSLHTS 0.4057916 0.4057916 0.4057916 0.4981263 0.4981263 0.4981263 0.4646266 0.4646266 0.4646266 

When n=200 

Activation 

functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 
Hidden Neuron (5) 

Hidden Neuron 

 (10) 

RELU 0.5873649 0.5881179 0.5869946 0.308537 0.634238 0.6340868 0.308537 0.634238 0.6340868 

sigmoid 0.5826101 0.5860443 0.5720085 0.6313711 0.6309563 0.6386879 0.6732878 0.6768626 0.667942 

Hyperbolic tangent 0.5970667 0.5748272 0.5638314 0.6322046 0.6488517 0.6433647 0.6707231 0.6702858 0.6681361 

SSLHT 0.4391822 0.4982035 0.4229245 0.4590161 0.4439311 0.4255294 0.4890826 0.4141392 0.4369202 

SSLHTS 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392 

When n=500 

Activation 

functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 
Hidden Neuron (5) 

Hidden Neuron 

 (10) 

RELU 0.9587568 0.9567833 0.9596407 0.9546522 1.027125 1.069239 0.9498151 0.8412903 0.9498849 

sigmoid 0.9395106 0.9413349 0.9698294 0.99048 0.9874596 0.991759 0.9159227 0.8983348 0.9165466 

Hyperbolic tangent 0.9909502 0.9653519 0.9419297 0.9811419 0.9723048 1.071862 0.9039508 1.0275 0.9033646 

SSLHT 0.9336583 0.9750791 0.9021643 0.9437664 0.9324454 0.9579638 0.9532421 0.9018967 0.9726117 

SSLHTS 0.9235326 0.9141392 0.9324244 0.9354447 0.9363321 0.94321345 0.9454432 0.9466654 0.95443211 

When 

n=1000 

Activation 

functions 

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10% 

Hidden Neuron 

(2) 

Hidden Neuron  

(5) 

Hidden Neuron 

(10) 

Hidden Neuron 

(2) 

Hidden Neuron 

(5) 

Hidden Neuron 

 (10) 

Hidden Neuron 

(2) 
Hidden Neuron (5) 

Hidden Neuron 

 (10) 

RELU 1.045718 1.044086 1.042721 1.097914 1.098102 1.097986 1.014376 1.012394 1.014541 

sigmoid 1.054239 1.05041 1.045192 1.110031 1.094073 1.096389 1.023284 1.01566 1.010466 

Hyperbolic tangent 1.053457 1.049495 1.035197 1.096626 1.090496 1.093852 1.010068 1.008129 1.006755 

SSLHT 1.023457 1.025666 1.030545 1.012341 1.089852 1.089165 1.007187 1.004144 1.001620 

SSLHTS 1.039659 1.039659 1.031659 1.044392 1.044392 1.054392 1.001621 1.001621 1.001621 
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4. Conclusion 

In this study, Mean Square Error (MSE) was used to assess the performances of all ANN models. 
Conclusively, RELU produced majority of the lowest mean square errors (MSEs) across the sample 

sizes. Also, as the training percentage increases, the mean square error increases in most cases. The 
performance of the heterogeneous transfer functions considered have been good in terms of 

prediction measures has they produced lowest mean square error in almost all the cases of training 

sets and at different level of sample sizes considered.  

Neural network model is one of the so called important models used is data science for pattern and 

image recognition, computer vision and so on. Without the use of activation functions, neural 

network cannot be used because it is the main functional part of the model. In previous studies, 

homogenous transfer functions have been used in predictions in most of these areas mentioned 
above. With the result obtained from this study, it is recommended that heterogeneous transfer 

functions for neural network models should be considered for neural network models. The forecast 

performance of the heterogeneous transfer functions in this study has shown that, if used in neural 
network models for the aforementioned areas of research and many more, better results will be 

attained.    
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