
International Journal of Data Science ISSN 2722-2039

Vol. 2, No. 2, December 2021, pp. 92-103 92

Performance of Artificial Neural Network Using Heterogeneous

Transfer Functions

Tayo P. Ogundunmade a,b,1,*, Adedayo A. Adepoju c,2

a Research Exchange Scholar, Academy Mobility Project, University of Tlemcen, Algeria
b Laboratory for Interdisciplinary Statistical Analysis (UI-LISA), Department of Statistics, University of Ibadan, Ibadan, Nigeria
c Department of Statistics, University of Ibadan, Ibadan, Nigeria
1 ogundunmadetayo@yahoo.com; 2pojuday@yahoo.com

* corresponding author

1. Introduction

Deep neural networks have bested notable benchmarks across computer vision, reinforcement
learning, speech recognition, and natural language processing. However, neural networks still have
deficiencies. For instance, they have a penchant to over-fit, and large data sets and careful

regularization are needed to combat this tendency. Artificial Neural Networks use a variety of

architectures. This study centers on the Multi-Layer Perceptron (MLP) which is the most
commonly used type of ANN. The MLP is also known as the Feed-Forward Network (FFN). MLP

has been found to be powerful in terms of model precision in the usage of homogeneous transfer

functions (TFs), especially with complex or large data set. The choice of MLP is because it is the

only ANN type that allows for statistical inference.

Blundell, C. et al (2015) introduced a new, efficient, principled and back propagation-compatible

algorithm for learning distribution, a probability on the weights of a neural network, called Bayes

by Back prop. Lee et al.(2017) derived the exact equivalence between infinitely wide deep
networks and GPs. Matthews et al. , (2018) studied the relationship between random, wide, fully

ART IC LE INF O ABST RACT

Article history

Received August 21, 2021

Revised October 7, 2021

Accepted November 15, 2021

Neural networks have been very important models across computer
vision, natural language processing, speech and image recognition,
aircraft safety and many more. It uses a variety of architectures that
centres on the Multi-Layer Perceptron (MLP) which is the most
commonly used type of Artificial Neural Network. MLP has been found
to be good in terms of model precision in the usage of Homogenous
Transfer/activation Functions (HTFs), especially with large data set.
Based on the preliminary investigations of ranking of transfer functions
by error variance (Udomboso, 2014), three HTFs are considered to
perform better than other HTFs in prediction. These HTFs are the
Hyperbolic Tangent Transfer functions (TANH), Hyperbolic Tangent
Sigmoid Transfer function (TANSIG) and the Symmetric Saturating
Linear Transfer Function (SSLTF). In this work, the performance of two
Heterogeneous Transfer Functions (HETFs), which came as a result of
the convolution of the three best HTFs, were compared with the
performance of the three above listed HTFs. The hidden neurons used
are 2, 5 and 10, while the sample sizes include 50, 100, 200, 500 and
1000. The data were divided into training sets of 90, 80 and 70
respectively. The results showed that the HETFs performed better in
terms of the forecast using Mean Square Error (MSE), Mean Absolute
Error (MAE) and Test Error as the forecast prediction criteria.

This is an open access article under the CC–BY-SA license.

Keywords

activation functions

artificial neural network

multi-layer perceptron

mean square error

mean absolute error

International Journal of Data Science ISSN 2722-2039

Vol. 2, No. 2, December 2021, pp. 92-103 93

Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

connected, feed forward networks with more than one hidden layer and Gaussian processes with a

recursive kernel definition.

Garriga-Alonso et al. (2019) showed that the output of a (residual) CNN with an appropriate prior

over the weights and biases is a GP in the limit of infinitely many convolutional filters for dense
networks. Laurence Aitchison (2020) They argued that getting Bayesian neural networks to

perform comparably to artificially reduce uncertainty using a ”tempered” or ”cold” posterior. This

is extremely concerning if the prior is accurate.

Wenzel et al.(2020) demonstrated through careful MCMC sampling that the posterior predictive

induced by the Bayes posterior yields systematically worse predictions compared to simpler

methods including point estimates obtained from SGD. Dusenberry et al. (2020) proposed a rank-1
parameterization of BNNs, where each weight matrix involves only a distribution on a rank-1

subspace. Garriga-Alonso et al. (2021) Correlating the weights maintains the correlations in the

activations. Varying the amount of correlation interpolates between independent-weight limits and

mean-pooling. Hafner, D. etal (2020) proposed noise contrastive priors (NCPs) to obtain reliable
uncertainty estimates. The key idea is to train the model to output high uncertainty for data points

outside of the training distribution. Tim Pearce et al.(2020) designed a simple, flexible approach to

creating expressive priors in Gaussian process (GP) models makes new kernels from a combination
of basic kernels, e.g. summing a periodic and linear kernel can capture seasonal variation with a

long term trend.

Cui et al. (2021) proposed a new joint prior over the local (i.e., feature-specific) scale parameters
that encodes knowledge about feature sparsity, and a Stein gradient optimization to tune the hyper

parameters in such a way that the distribution induced on the model’s PVE matches the prior

distribution. Vincent Fortuin et al. (2021) studied summary statistics of neural network weights in

different networks trained using SGD. They found that fully connected networks (FCNNs) display
heavy tailed weight distributions, while convolutional neural network (CNN) weights display

strong spatial correlations.

The aim of this study is to compare the performance of ANN using heterogeneous transfer
functions and homogenous transfer Functions. The rest of this paper are the methodology, data

simulation for the study, presentation of result and conclusion.

2. Methodology

2.1. Artificial Neural Networks (ANNs)

As simple statistical models, ANNs have been useful to many functions, such as forecasting, curve-

fitting, and regression in the fields of engineering, earth sciences, medicine, hydrology, etc. ANN
models study data and carry out jobs such as classification or forecasting. The nature of the data is

used to assess the network model in the building procedure, unlike other models that use before

postulations. ANN arrangements are structured in levels positioned as input, hidden, and output

levels. Within every level, there are interconnected elements known as neurons. Weights are the
essential variables of the ANN models used to resolve a hitch. The total of the weighted inputs and

the bias terms are entered into an activation function that is executed to avert the output from

getting bigger. Frequently executed sets of activation functions include the sigmoid, hyperbolic
tangent, and the rectified linear unit (ReLU) functions.

The statistics neural network model is given as

 (1)

Output = sum (weights*inputs) + bias (2)

International Journal of Data Science ISSN 2722-2039

Vol. 2, No. 2, December 2021, pp. 92-103 94

Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

Where y is the dependent variable, = () is a vector of independent variables,

where w = is the network weight and ei = is the stochastic term that is normally distributed (that

is, e ~ N(0,)).

2.2. ANN Model Development

This study utilized a multilayer perceptron (MLP) feed-forward network. The multilayer perceptron
reduced the error between the ANN model outputs and observed values by renewing the weights

between each node. The choice of the hidden nodes in the complicated area in ANN modelling. To

date, there are no precise strategies for matters such as how many hidden layers and hidden nodes

should be integrated into an ANN model. Thus, a trial-and-error method was utilized to find the
best number of nodes for the hidden layer. In this study, the data was split into training and test

sets, training set and testing set (70%, 80%, 90%), hidden layers (2,5,10) and activation functions

(sigmoid, hyperbolic tangent and rectified linear unit). Thus, the results obtained in the results
section are the estimations of the performance of the ANN on the test data. All input data are

normalized using the following equations:

 (3)

 (4)

Where is the observed value, and are respectively the minimum and maximum
data in the input time series.

2.3. Activation functions

The perception of the handling of neural networks is mainly attained through the activation
functions. An activation function is a mathematical function that changes the input variable to an

output variable. In default of activation functions, the operation of neural networks will be similar

to linear functions. A linear function is a function where the output variable is exactly related to the

input variable.

Nevertheless, most of the limitations the neural networks try to unravel are nonlinear and

complicated. The activation functions are utilized to attain the nonlinearity. Nonlinear functions are

high-level polynomial functions. The graph of a nonlinear function is curved and combines the
complication element. Activation functions provide the nonlinearity element to neural networks

and render them accurate universal function approximations.

2.3.1. Sigmoid

The sigmoid function is a mathematical function that gives a sigmoidal curve; a characteristic curve
for its S shape. This is the oldest and frequently used activation function. This compresses the input

to any value between 0 and 1 and makes the model logistic. This function is known as a special

case of logistic function defined by the following formula:

 (5)

2.3.2. Hyperbolic tangent

Another common and mostly utilized activation function is the tanh function. This is a nonlinear

function, characterized in the scale of values (-1, 1). One thing to make clear is that the gradient is

International Journal of Data Science ISSN 2722-2039

Vol. 2, No. 2, December 2021, pp. 92-103 95

Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

better for tanh than sigmoid (the derivatives are steeper). Settling between sigmoid and tanh will be

based on the gradient strength prerequisite. Like the sigmoid, tanh also has the missing slope

constraint. The function is specified by the formula:

f(x) = tanh (x) (6)

This looks like sigmoid; it is a scaled sigmoid function.

2.3.3. Rectified Linear Unit

Rectified Linear Unit (ReLU) is a predominantly utilized activation function. It is a simple

specification and has merits over the other functions. The function is defined by the following

formula:

f(x) = 0 when x 0

 x when x = 0 (7)

The scale of the result is between 0 and infinity. RELU finds usage in computer vision and speech

identification using deep neural networks.

2.4. Artificial Neural Network with Heterogeneous Transfer Function

The hardware was provided for the training process depicted in table 1. GPU was necessary in the

training process to speed up the time process for eye modelling. Tensorflow-GPU version 1.12 was

selected to handle the training process with Keras support. Beside the Tensorflow-GPU, OpenCV
was also installed to run the model in real time application using webcam.

The model below gives a neural network model with a homogenous transfer function

F(x, w) =] (8)

Where g (.) is the transfer functions, which makes the equation (2.8) above is called an

Homogenous SNN (HSNN) model. Given a convoluted form of the artificial neural network model

given above, using the product convolution, we have

F(x, w) =] (9)

Where (.) and (.) are transfer functions, which are HTFs but combined in equation 3 above to

make a heterogeneous Transfer function (HETFs). Equation (2.9) above is called the
Heterogeneous SNN (HETSNN) model.

2.5. Heterogeneous Transfer Functions (HETFs)

Based on the above listed best HTFs, two convoluted HETFs were derived using the principle of

convolution i.e. g1(.) x g2(.) such that the newly derived transfer functions are also a probability
density function. These two HETFs below are derived using the convolution of Symmetric

Saturating Linear Transfer Function and the Hyperbolic Tangent Transfer Function (SSLHT) and

the convolution of the Symmetric Saturating Linear Transfer Function and the Hyperbolic Tangent
Sigmoid Transfer Function (SSLHTS) (Udomboso, 2014).

The summary of the derived function is given as:

(1) Symmetric Saturating Linear and Hyperbolic Tangent (SSLHT)

 For -1 < x < 1

International Journal of Data Science ISSN 2722-2039

Vol. 2, No. 2, December 2021, pp. 92-103 96

Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

(2) Symmetric Saturating Linear and Hyperbolic Tangent Sigmoid (SSLHTS)

 For -1 < x < 1

Where p is the number of parameters.

2.6. Data Simulation for the Study

The data to be used for this study was generated using the model below:

y = x + 0.3sin(2 (x + ei))+ei (10)

Where ei ~ N(0,0.02) and x ~N(0.1).

The results are based on the prediction and model selection criterion given at different levels of

hidden neurons at different sample sizes. The hidden neurons used are 2, 5 and 10, while the

sample sizes include 50, 100, 200, 500 and 1000. The data was also divided into training and

testing sets of 90 and 10, 80 and 20 and 70 and 30 respectively.

2.7. Prediction Selection Criteria

The prediction selection criteria used in this work are the Mean Square Error (MSE), Mean

Absolute Error (MAE) and the Test Error. Mean square error measures the average of the squares
of the errors or the average squared between the estimated values and the actual value.

Mathematically, it can be represented as:

MSE =

Mean Absolute Error (MAE) is a measure of prediction accuracy. It is the measure of absolute

error between the forecast value and the true value. Mathematically, it can be written as:

MAE =

Test Error is used when a model is to be validated. When we calculate the error on data which was

unknown in the training phase, we are calculating the test error.

3. Results and Discussion

This present the analyses of the performance of ANN using homogenous transfer functions and

heterogeneous transfer functions. Tables 1 to 3 below shows the forecast performance measures
results for the simulated data using the mean square error, mean absolute error and the test error

respectively. The tables show the performance of the transfer functions (HTFs and HETFs) under

different training set numbers (70%, 80% and 90%) and under different hidden neurons (2, 5, and

10) under different activation functions and at different sample sizes. The results obtained from
Tables 1 to 3 reflects the performance of the activation functions, for three the homogenous transfer

functions and two heterogeneous transfer function. Considering the activation function, RELU

produced majority of the lowest mean square errors (MSEs), mean absolute error (MAEs) and the
test error among the homogenous transfer functions while the two heterogeneous transfer functions

produced lowest mean square error, mean absolute error and the test error compared to the

homogenous transfer functions considered which make them better in prediction. It can also be
seen from the results that, as the sample size increases, the value of the mean square error

decreases.

International Journal of Data Science ISSN 2722-2039

Vol. 2, No. 2, December 2021, pp. 92-103 97

Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

Fig. 1 Distribution of performance of the activation functions using MSE

Fig. 2 Distribution of performance of the activation functions using MAE

International Journal of Data Science ISSN 2722-2039

Vol. 2, No. 2, December 2021, pp. 92-103 98

 Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

Fig. 3 Distribution of performance of the activation functions using Test Error

International Journal of Data Science ISSN 2722-2039

Vol. 2, No. 2, December 2021, pp. 92-103 99

 Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

Table 1. Forecast Performance using MSE

When n=50

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.04536065 0.04564356 0.0492185 0.04089795 0.04824148 0.04872315 0.04601659 0.04480303 0.04618498

Sigmoid 0.05656073 0.05022231 0.04483313 0.05572514 0.0575734 0.05603065 0.06303656 0.05302699 0.05153979

Hyperbolic tangent 0.0484365 0.0480776 0.0451661 0.04988979 0.05074671 0.05414198 0.04942139 0.05035907 0.04780267

SSLHT 0.03796254 0.03120936 0.03477873 0.03650677 0.03219296 0.02039492 0.0331542 0.03995348 0.03773181

SSLHTS 0.04369801 0.04369801 0.0140745 0.00898904 0.00898904 0.00898904 0.00701129 0.00701129 0.00701129

When n=100

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.0405356 0.04843695 0.04852811 0.0550651 0.05122153 0.0512218 1.037169 0.04466014 0.04486319

sigmoid 0.04143232 0.04887886 0.0481793 0.06226006 0.04868746 0.05041625 0.04517857 0.04503382 0.0424108

Hyperbolic tangent 0.04801389 0.04907249 0.04781495 0.05205736 0.04831357 0.05047595 0.04772446 0.0495061 0.04437785

SSLHT 0.4825532 0.04549503 0.04182575 0.04366129 0.04229004 0.04124163 0.04100606 0.04520576 0.0237550

SSLHTS 0.00137821 0.00137821 0.00137821 0.00139706 0.00139706 0.00139706 0.001655153 0.00165515 0.00165515

When n=200

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.04283649 0.04282593 0.0428457 0.0461478 0.04095318 0.04098674 0.8261478 0.04095318 0.04098674

Sigmoid 0.04592385 0.04522716 0.04638254 0.04211514 0.04236094 0.04076459 0.03885812 0.03815169 0.03722988

Hyperbolic tangent 0.04251323 0.04545386 0.04758545 0.04185362 0.03908446 0.04039074 0.03795205 0.03717498 0.03710731

SSLHT 0.05345796 0.04138555 0.04157519 0.04254912 0.03990308 0.0430479 0.0308365 0.0310234 0.0374535

SSLHTS 0.00192205 0.00192205 0.00192205 0.00163919 0.00163919 0.00163919 0.00205974 0.02059741 0.02059741

When n=500

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.04226684 0.04706437 0.04697518 0.05910555 0.04706283 0.05580163 0.05096383 0.0682076 0.0509657

sigmoid 0.04756158 0.04742588 0.04681848 0.05169109 0.04871218 0.05151577 0.05112607 0.05182675 0.05082465

Hyperbolic tangent 0.04882288 0.04756547 0.04841315 0.05337090 0.05033169 0.0527485 0.05185673 0.0688195 0.05189598

SSLHT 0.05317327 0.04940695 0.06562853 0.05453931 0.0423414 0.04676842 0.0483453 0.06449127 0.05288543

SSLHTS 0.003122762 0.003122762 0.003122762 0.003649035 0.003649035 0.003649035 0.003565195 0.003565195 0.003565195

When

n=1000

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.04737156 0.0473454 0.04733953 0.04664931 0.04664866 0.0466491 0.05072219 0.05069983 0.05072245

sigmoid 0.04970722 0.04864827 0.04884184 0.04895137 0.04704777 0.04681032 0.05151714 0.05199655 0.05220437

Hyperbolic tangent 0.0479398 0.04760941 0.04896131 0.04791326 0.04817565 0.04765268 0.05220662 0.05257291 0.05031869

SSLHT 0.0479398 0.04733635 0.04733035 0.04736291 0.04633459 0.04850382 0.02210718 0.05062815 0.05180198

SSLHTS 0.04789064 0.04789064 0.04789064 0.04738028 0.04738028 0.04738028 0.05180198 0.05180198 0.05180198

100 International Journal on Data Science ISSN 2722-2039

 Vol. 2, No. 2, December 2021, pp. 92-103

Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

Table 2. Forecast Performance using MAE

When n=50

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

 (2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.01084481 0.01583126 0.03362715 0.01033206 0.01431494 0.01230493 0.07415554 0.05585283 0.06902516

sigmoid 0.01913261 0.05988184 0.01294782 0.02172133 0.01963479 0.02395511 0.08484791 0.05532735 0.05746984

Hyperbolic tangent 0.02443442 0.01557737 0.0158182 0.08705485 0.0137796 0.01161389 0.06070249 0.05248329 0.05708698

SSLHT 0.00318743 0.004393331 0.003620382 0.003599549 0.003123241 0.004051393 0.001471838 0.006308208 0.006316871

SSLHTS 0.001589913 0.001589913 0.001782391 0.001148536 0.001148536 0.001148536 0.00983228 0.00983228 0.00983228

When n=100

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

 (2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.279912 0.02808561 0.02877417 0.2503624 0.07158606 0.07178141 0.5304296 0.07728433 0.07624355

sigmoid 0.02858596 0.03014854 0.02917777 0.07906109 0.07510564 0.07556928 0.08843629 0.09180876 0.09133624

Hyperbolic tangent 0.02860824 0.02876265 0.02917051 0.07348370 0.07439191 0.07323994 0.07688096 0.06795592 0.0780563

SSLHT 0.002428043 0.006019314 0.005896373 0.007284321 0.006863603 0.007715116 0.005123343 0.00779468 0.001477266

SSLHTS 0.002834303 0.002834303 0.002834303 0.001414445 0.001414445 0.001414445 0.005339173 0.005339173 0.005339173

When n=200

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

 (2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.01555635 0.01592215 0.01561166 0.1504472 0.03425668 0.03454515 0.1504472 0.03425668 0.03454515

sigmoid 0.01506126 0.01600192 0.01924248 0.03271113 0.03198777 0.04034036 0.02779946 0.02715333 0.02726782

Hyperbolic tangent 0.01227057 0.01887132 0.02146642 0.03277947 0.03601551 0.03803863 0.03116556 0.02906871 0.02816523

SSLHT 0.00262705 0.00222336 0.00252556 0.00492054 0.00376587 0.00301193 0.00125838 0.00355436 0.00288313

SSLHTS 0.00341757 0.00341757 0.00341757 0.00352640 0.00352640 0.00352640 0.00355436 0.00355436 0.00355436

When n=500

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

 (2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.07049311 0.02869529 0.02942641 0.03408281 0.01640909 0.09467976 0.07084378 0.01809918 0.07092672

sigmoid 0.07970243 0.08534412 0.05957753 0.03398892 0.02442058 0.03394872 0.02853253 0.007577316 0.06930484

Hyperbolic tangent 0.03722658 0.01050819 0.01255912 0.15214931 0.02551606 0.04395881 0.05523077 0.02457272 0.05645807

SSLHT 0.008363895 0.002497509 0.001445503 0.002883166 0.001324457 0.004179057 0.00213211 0.002030934 0.00929881

SSLHTS 0.008970462 0.008970462 0.008970462 0.008247808 0.008247808 0.008247808 0.00931740 0.009317405 0.009317405

When n=1000

Activation functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

 (2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

RELU 0.01391879 0.01362747 0.01378003 0.09982207 0.09948592 0.09971453 0.03724168 0.03702656 0.03723718

sigmoid 0.08474242 0.01070048 0.01165833 0.02439061 0.01111752 0.09931213 0.03453425 0.03540605 0.03602913

Hyperbolic tangent 0.01090115 0.01198944 0.01398887 0.07063271 0.07923062 0.08239547 0.03609895 0.03606323 0.03867038

SSLHT 0.001090115 0.001779952 0.001684105 0.00201341 0.00131349 0.00526225 0.007921446 0.003855935 0.003636896

SSLHTS 0.001346109 0.001346109 0.001346109 0.00109871 0.00109871 0.00109871 0.003636896 0.003636896 0.003636896

ISSN 2722-2039 International Journal on Data Science 101
 Vol. 2, No. 2, December 2021, pp. 92-103

Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

Table 3. Forecast Performance using Test Error

When n=50

Activation

functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)
Hidden Neuron (5)

Hidden Neuron

 (10)

RELU 1.004461 1.017161 1.193877 1.092693 1.067767 1.074861 1.455757 1.597596 1.473599

sigmoid 0.9899312 1.012857 1.007863 1.1124 1.100785 1.112796 1.406555 1.609739 1.592005

Hyperbolic tangent 1.031811 1.014247 1.022047 1.083076 1.08429 1.121298 1.551501 1.603778 1.57132

SSLHT 0.9706997 0.9571166 1.070951 1.10896 1.015166 1.012562 1.107582 1.519653 1.540541

SSLHTS 0.980448 0.931562 1.013156 1.018861 1.018861 1.018861 1.293583 1.293583 1.293583

When n=100

Activation

functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)
Hidden Neuron (5)

Hidden Neuron

 (10)

RELU 0.5154035 0.5654503 0.5688913 0.2807331 0.6337495 0.6333759 0.3413968 0.6446217 0.6470433

sigmoid 0.5943388 0.560711 0.5434544 0.7121132 0.6041872 0.6278305 0.6355053 0.626227 0.6092434

Hyperbolic tangent 0.5597554 0.5750345 0.5523297 0.6459385 0.5994198 0.631463 0.6690408 0.683816 0.642954

SSLHT 0.4143074 0.4591691 0.4084604 0.4705492 0.4233827 0.4410327 0.4191503 0.4141392 0.4675494

SSLHTS 0.4057916 0.4057916 0.4057916 0.4981263 0.4981263 0.4981263 0.4646266 0.4646266 0.4646266

When n=200

Activation

functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)
Hidden Neuron (5)

Hidden Neuron

 (10)

RELU 0.5873649 0.5881179 0.5869946 0.308537 0.634238 0.6340868 0.308537 0.634238 0.6340868

sigmoid 0.5826101 0.5860443 0.5720085 0.6313711 0.6309563 0.6386879 0.6732878 0.6768626 0.667942

Hyperbolic tangent 0.5970667 0.5748272 0.5638314 0.6322046 0.6488517 0.6433647 0.6707231 0.6702858 0.6681361

SSLHT 0.4391822 0.4982035 0.4229245 0.4590161 0.4439311 0.4255294 0.4890826 0.4141392 0.4369202

SSLHTS 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392 0.4141392

When n=500

Activation

functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)
Hidden Neuron (5)

Hidden Neuron

 (10)

RELU 0.9587568 0.9567833 0.9596407 0.9546522 1.027125 1.069239 0.9498151 0.8412903 0.9498849

sigmoid 0.9395106 0.9413349 0.9698294 0.99048 0.9874596 0.991759 0.9159227 0.8983348 0.9165466

Hyperbolic tangent 0.9909502 0.9653519 0.9419297 0.9811419 0.9723048 1.071862 0.9039508 1.0275 0.9033646

SSLHT 0.9336583 0.9750791 0.9021643 0.9437664 0.9324454 0.9579638 0.9532421 0.9018967 0.9726117

SSLHTS 0.9235326 0.9141392 0.9324244 0.9354447 0.9363321 0.94321345 0.9454432 0.9466654 0.95443211

When

n=1000

Activation

functions

Training:70%; Testing:30% Training:80%; Testing:20% Training:90%; Testing:10%

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

(10)

Hidden Neuron

(2)

Hidden Neuron

(5)

Hidden Neuron

 (10)

Hidden Neuron

(2)
Hidden Neuron (5)

Hidden Neuron

 (10)

RELU 1.045718 1.044086 1.042721 1.097914 1.098102 1.097986 1.014376 1.012394 1.014541

sigmoid 1.054239 1.05041 1.045192 1.110031 1.094073 1.096389 1.023284 1.01566 1.010466

Hyperbolic tangent 1.053457 1.049495 1.035197 1.096626 1.090496 1.093852 1.010068 1.008129 1.006755

SSLHT 1.023457 1.025666 1.030545 1.012341 1.089852 1.089165 1.007187 1.004144 1.001620

SSLHTS 1.039659 1.039659 1.031659 1.044392 1.044392 1.054392 1.001621 1.001621 1.001621

International Journal of Data Science ISSN 2722-2039

Vol. 2, No. 2, December 2021, pp. 92-103 102

 Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

4. Conclusion

In this study, Mean Square Error (MSE) was used to assess the performances of all ANN models.
Conclusively, RELU produced majority of the lowest mean square errors (MSEs) across the sample

sizes. Also, as the training percentage increases, the mean square error increases in most cases. The
performance of the heterogeneous transfer functions considered have been good in terms of

prediction measures has they produced lowest mean square error in almost all the cases of training

sets and at different level of sample sizes considered.

Neural network model is one of the so called important models used is data science for pattern and

image recognition, computer vision and so on. Without the use of activation functions, neural

network cannot be used because it is the main functional part of the model. In previous studies,

homogenous transfer functions have been used in predictions in most of these areas mentioned
above. With the result obtained from this study, it is recommended that heterogeneous transfer

functions for neural network models should be considered for neural network models. The forecast

performance of the heterogeneous transfer functions in this study has shown that, if used in neural
network models for the aforementioned areas of research and many more, better results will be

attained.

Acknowledgements

We acknowledgement the active participation of the authors to the success of the research paper.

References

[1] Aitchison, L. (2020) A statistical theory of cold posteriors in deep neural networks. arXiv preprint

arXiv:2008.05912.

[2] Aitchison, L., Yang, A. X., and Ober, S. W. (2020) Deep kernel processes. arXiv preprint

arXiv:2010.01590.

[3] Bayes, T. An essay towards solving a problem in the doctrine of chances. Philosophical transactions

of the Royal Society of London, 53:370–418, 1763. By the late Rev. Mr. Bayes, FRS communicated

by Mr. Price, in a letter to John Canton, AMFRS.

[4] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015) Weight uncertainty in neural

networks. arXiv preprint arXiv:1505.05424.

[5] Christopher Godwin Udomboso (2013) On Some Properties of a Heterogeneous Transfer Function

Involving Symmetric Saturated Linear (SATLINS) with Hyperbolic Tangent (TANH)Transfer

Functions .Journal of Modern Applied Statistical Methods. Volume 12, Issue 2, Article 26.

[6] Christopher Godwin Udomboso (2014) On the level of precision of an heterogeneous statistical neural

network model. PhD thesis, Department of Statistics, University of Ibadan, Nigeria.

[7] Heek, J. and Kalchbrenner, N (2019). Bayesian inference for large scale image classification. arXiv

preprint arXiv:1908.03491.

[8] Gauss, C. F. Theoria motvs corporvm coelestivm in sectionibvs conicis solem ambientivm. Sumtibus

F. Perthes et IH Besser, 1809.

[9] Garriga-Alonso, A. and Fortuin, V. (2021). Exact Langevin dynamics with stochastic gradients. arXiv

preprint arXiv:2102.01691

[10] Garriga-Alonso, A. and van der Wilk, M (2021). Correlated weights in infinite limits of deep

convolutional neural networks. arXiv preprint arXiv:2101.04097.

[11] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013) Bayesian

data analysis. CRC press.

[12] Nalisnick, E. T.(2018) On priors for Bayesian neural networks. PhD thesis, UC Irvine.

[13] Neal, R. M.(1996) Bayesian learning for neural networks, volume 118. Springer.

[14] Student (1908) The probable error of a mean. Biometrika, pp. 1–25.

ISSN 2722-2039 International Journal on Data Science 103
 Vol. 2, No. 2, December 2021, pp. 92-103

Tayo P. Ogundunmade et.al (Performance of Artificial Neural Network Using Heterogeneous Transfer Functions)

[15] Wenzel, F., Roth, K., Veeling, B. S., Swi atkowski, J., Tran, L., Mandt, S., Snoek, J., Salimans, T.,

Jenatton, R., and Nowozin, S(2020a). How good is the Bayes posterior in deep neural networks

really? In International Conference on Machine Learning.

[16] Wilson, A. G. and Izmailov, P. (2020) Bayesian deep learning and a probabilistic perspective of

generalization. arXiv preprint arXiv:2002.08791.

[17] Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A. G. Cyclical stochastic gradient MCMC for

Bayesian deep learning. arXiv preprint arXiv:1902.03932, 2019.

