
International Journal of Data Science ISSN 2722-2039

Vol. 3, No. 2, December 2022, pp. 80-92 80

A Cloud-Based Container Microservices: A Review on Load-
Balancing and Auto-Scaling Issues

Shamsuddeen Rabiu a,1,*, Chan Hauh Yong a,2 , Sharifah Mashita Syed Mohamad a,3

a School of Computer Sciences, University Sains Malaysia,11800 USM, Pulau Pinang Malaysia.
1 shamsrabiu@student.usm.my; 2 hychan@usm.my; 3 mashita@usm.my

* corresponding author

1. Introduction

Over the last decade, microservices have become the design style of choice for scalable, evolving
cloud-based applications. For a well-designed microservice architecture with improved QoS, a solid
understanding of relevant quality attributes is required.

A well-designed microservice architecture with improved QoS is dependent on a thorough
understanding of the quality attributes involved [1]. With the emergence of some complex business
scenarios, many enterprise business requirements have also increased dramatically, and the existing
monolithic architecture often cannot meet the needs. Because of the increase in business volume, the
system functions become increasingly complex. As the number of user usage increases, data also
increases, server response will become slower and slower, and the user experience becomes terrible.
The original system architecture will gradually become chaotic and fragile [2].

Developers are increasingly turning to microservices to address the issue of monolithic development.
Containers have recently become popular for deploying microservices across geographically distant
clouds. Virtual machines (VMs) have been replaced with containers, which are a lighter version of
virtual machines. They're gaining a lot of traction in the industry because they're much lighter than
VMs. They're simple to download and put into action [3, 4].

Auto-scaling is essential in the cloud computing environment for lowering cloud operating costs and
improving QoS. The goal of this study was to discover load balancing and auto-scaling solutions that
could dynamically change resource allocation to cloud services based on incoming workloads [5].
This paper provides reviews on the issues of load balancing and auto-scaling in cloud-based container

ART IC LE INF O

ABST RACT

Article history

Received March 20, 2022

Revised August 5, 2022

Accepted October 22, 2022

 Microservices are being used by businesses to split monolithic software
into a set of small services whose instances run independently in
containers. Load balancing and auto-scaling are important to cloud
features for cloud-based container microservices because they control the
number of resources available. The current issues concerning load
balancing and auto-scaling techniques in Cloud-based container
microservices were investigated in this paper. Server overloaded, service
failure and traffic spikes were the key challenges faced during the
microservices communication phase, making it difficult to provide better
Quality of Service (QoS) to users. The aim is to critically investigate the
addressed issues related to Load balancing and Auto-scaling in Cloud-
based Container Microservices (CBCM) in order to enhance performance
for better QoS to the users.

This is an open access article under the CC–BY-SA license.

Keywords

Microservice

Container

cloud-based

load balancing

auto-scaling.

ISSN 2722-2039 International Journal of Data Science 81
Vol. 3, No. 2, December 2022, pp. 80-92

Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

microservice, the microservices cloud-based system, container microservice, and the primary
objective/issues of load balancing and auto-scaling in microservices. The paper is motivated to
investigate current issues surrounding load balancing and auto-scaling techniques in cloud-based
container microservices to overcome the problem of server overload, traffic spikes, and service
failure and improve the performance of its services for better QoS to users. The remainder of the
paper is organized as follows: Section 2 discusses related work, Section 3 discusses the result of the
research work, and Section 4 discusses the conclusion and future work.

1.1 Microservice Architecture

Microservice architecture has emerged as a lightweight subset of Service Oriented Architecture
(SOA) that firms like Amazon use to avoid monolithic application challenges while reaping some of
the SOA design benefits [6]. Microservices have gained significant traction in the business world in
recent years. This architecture can be thought of as a refined and simplified version of SOA [7].

According to [9], "a microservice architectural style is a means of designing a single app as a
collection of small services, each running in its process and communicating via lightweight
mechanisms, most frequently a Hypertext Transfer Protocol (HTTP) resource Application
Programming Interface (API)." As a result, the architecture can be viewed as a group of modest
services that interact via common communication channels to achieve the goals of users [10]. It
communicates with one another to provide users with the required functionality [8].

Figure 1. Microservice Architecture [23]

The application is broken down into a series of discrete services that can be developed, deployed,
and run separately. In general, each microservice type will install multiple instances, split the
workload across multiple servers or data centers, and connect the network to share the load [11].
Microservices fundamentally alter many current cloud system assumptions, presenting both benefits
and problems when it comes to improving service quality and usage [12]. As per the principles of
Microservice Architecture design, every service needs to be independent of the other.

1.2 Cloud-based Microservices

Cloud computing, when properly built, is a model that allows businesses to create corporate
applications that can expand their computer resources on demand. Companies that use Infrastructure
as a Service (IaaS) or Platform as a Service (PaaS) solutions for their applications encounter some
issues when attempting to use cloud computing features such as auto-scaling, continuous delivery,
rapid deployments, high availability, and dynamic monitoring. The majority of companies that
attempted to migrate an application to an IaaS/PaaS solution used a monolithic application [6]. Cloud
computing is an emerging computing model, according to the authors of [14].

82 International Journal of Data Science ISSN 2722-2039
 Vol. 3, No. 2, December 2022, pp. 80-92

 Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

Computing services have become a major subject of Information Technology for academic and
industrial study in recent years [16]. Processing microservices in a cloud environment with minimal
processing time and cost while efficiently utilizing computing resources is a difficult task [17].
Different challenges in the deployment and continuous integration of microservices were initially
evaluated in [18], and an automated method was then presented and designed to address these
challenges utilizing various parameters such as response time, throughput, deployment time, and so
on.

1.3 Cloud-Based Container Microservices

A container microservices cloud-based application is made up of a group of small, self-contained
services that connect with one another using a lightweight mechanism [19]. It is becoming more
popular as companies migrate their infrastructures to the cloud [9]. Companies face a variety of
challenges when deploying their applications on the cloud due to their unique requirements. The
main challenge is the scalability of additional program functionalities based on their needs [18]. As
a result of the evolution of cloud container technology, several companies have developed their
applications as microservices, breaking down monolithic architecture into discrete services that run
independently in containers [20]. When paired with microservices-style architecture, promising
container technologies like Docker offer considerable agility in designing and implementing
applications. Several essential deployment technologies, including container-based virtualization and
container orchestration solutions, have also come on board as a result of the designing of
microservice architecture [21].

Containers are an excellent choice for deploying microservices. They can be launched in seconds
and swiftly redeployed in the event of failure or migration, and they can scale to meet demand.
Containers, as depicted in the diagram below, operate as applications (microservices) within the
operating system. The operating system runs on top of the hardware, and each operating system may
have multiple containers, each of which runs the application [23].

Figure 2. A containers microservice layer architecture [23].

Based on the nature of the research, load balancing and auto-scaling are the primary objective
constraints that would be used to obtain the optimal values for workload distribution, response time,
and scalability for cloud-based container microservices to avoid server overloaded, traffic spikes,
service failure, and to scale up/out the number of available instances based on the loads, for better
QoS to users.

1.4 Load Balancing vs Auto-Scaling in Microservices

Load balancing and auto-scaling are the critical features in clouds, responsible for adjusting the
number of available resources to meet QoS demand. By balancing the load across multiple resources,
load balancing can achieve optimal resource usage, maximum throughput, maximum response time,

ISSN 2722-2039 International Journal of Data Science 83
Vol. 3, No. 2, December 2022, pp. 80-92

Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

and minimize overload [24]. The load balancer starts and stops any virtual machine in the cloud. The
load balancing technique, in conjunction with the auto-scaling feature, makes it simple to
automatically increase or decrease backend capacity in response to traffic spikes [25]. Consequently,
there is a need to optimize load balancing and auto-scaling strategies to configured and address cloud-
based container microservices problems. One of the most critical features of cloud computing is load
balancing. It's a method that uniformly distributes the dynamic local workload among all nodes in
the cloud, avoiding situations when some nodes are overburdened. Others, on the other hand, are
idling or doing little work. It aids in achieving high user satisfaction as well as a high resource
utilization ratio, hence enhancing overall system performance and resource consumption [26]. Load
balancing, by implementing fair-over, aids in the continuation of services when one or more
components of a microservice fail. Simultaneously, in cloud computing systems, the auto-scaling
technique enables on-demand resource availability based on specified workloads. Leading providers
such as Amazon Web Capabilities (AWS) Lambda [13] have launched services to address concerns
about microservice challenges (AWS).

1.5 Load Balancing in Microservices

For the development of a business unit, microservices architecture relies heavily on load balancing
[27]. Load balancing, also known as a server farm or server pool, is the act of distributing newly
received network traffic across servers in real-time or in batches. It's a method for distributing the
load across Server VMs in order to maximize resource usage, reduce response time, and avoid burden
[16]. When server resources aren't evenly distributed, some get overused while others sit idle,
reducing cluster performance. To address this issue, load balancing techniques are employed to
ensure that all activities are treated equally, hence boosting processing capacity and service quality
at the same time [27]. This process of sharing can be done on a large scale or according to a set of
rules. Rules include Round Robin and Least Connections [28]. Load balancing refers to the
distribution of workload among microservices and is only relevant in the context of horizontal
scalability [29]. Load balancing is one of the most significant and major challenges in the cloud;
because the cloud uses so many VMs, manually allocating resources in the cloud is challenging [16].
Load balancing is a key element of microservices architecture for the building of a business unit [27].
Because API calls are used to communicate between the services, numerous instances and loads must
be maintained across all accessible instances.

Load balancing alone minimizes the response time and distributes workloads uniformly across
servers. Still, during low/high services activity, there is a need to automatically scale up/out the
services infrastructure during low/high services activity. This problem could be auto-scaled based on
the capacity of the services so that instances can be increased or decreased dynamically based on
loads. To allow optimal workload distribution, the technology is integrated into the microservice
deployment architecture and set with appropriate load balancing algorithms [30].

Figure 3. Load balancing in Microservices [30]

84 International Journal of Data Science ISSN 2722-2039
 Vol. 3, No. 2, December 2022, pp. 80-92

 Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

As shown above, Physical Server B has a redundant copy of Microservice A. To guarantee that the
workloads are distributed evenly, the load balancer intercepts service consumer requests and
distributes them to both Physical Server A and B. The primary function of load balancing in
microservices is to distribute the workload across the entire servers. It's a technique for shifting a
load, task, or process from an overloaded server or data center to an underloaded server or data
center [16]. The Load Balancer was able to balance the load by distributing it over two or more Cloud
Servers. It keeps the load balanced, ensuring that no resource is overloaded. As a result, scalability,
continuous delivery, and operational efficiency increasingly require isolation. It's also generated
interest in microservices-based architecture, which let us split up a monolith and build, deploy,
execute, scale, and manage services separately [31]. Apart from microservices' agility and scalability,
service providers must properly orchestrate hundreds of microservices. In order to do so, a critical
issue must be addressed: how to effectively distribute loads through microservices [32]. Load
balancing algorithms are designed for this reason. There are several ways to load balancing
algorithms in the literature, and these algorithms can be classified into two types. The server-side
load balancing approach and the client-side load balancing approach [33], suggested that load
balancing brings up a mechanism that can assist improve system throughput and efficiency by
maximizing resource use. Its purpose is to disperse the load across available resources to enhance
throughput while minimizing response time. It also aids in the improvement of performance and the
effective utilization of resources.

Several load balancing algorithms have been enlisted by [34] and compared with their proposed load
balancing approach. Job scheduling optimization algorithms, Weights Fixed Load Balancing
Algorithms, and Server Dynamic Allocation Weight Algorithms were used, as well as traditional
Round Robin and Random Algorithms. Load balancing is classified into two types: server-side load
balancing and client-side load balancing:

1.5.1 Server-side load balancing

Server-side load balancing is monolithic. It is valid for both the client and the server. It receives
network and application traffic and distributes it among numerous backend servers using a variety of
methods. The client requests are distributed to the server through the middle component [36]. A load
distributor is placed in front of the servers and distributes traffic to them so that they can perform the
primary task equally or following predefined guidelines [28].

Figure 4. Server-side load balancing across multiple servers [28].

The process of deploying service instances across different servers and then setting a load balancer
in front of them is known as server-side load balancing. Most of the time, it's a hardware load
balancer. All incoming request traffic is routed through this load balancer, which serves as a middle
component. It then uses an algorithm to determine which server a particular request should be sent
to [37].

1.5.2 Client-side load balancing

In order to deliver requests, the client maintains a list of server IPs. The client chooses an IP address
from the list at random and sends the request to the server [36]. The load balancing is handled by the
client in client-side load balancing. In this circumstance, the client API should then be aware of all

ISSN 2722-2039 International Journal of Data Science 85
Vol. 3, No. 2, December 2022, pp. 80-92

Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

hardcoded or service registry instances of server API addresses. Bottlenecks and single points of
failure can be avoided using this strategy. There is no need to know anything about the server API
other than the registered name if service discovery is used because the server registry mechanism
would provide all of that information [28].

Figure 5. Client-side load balancing across multiple servers [28]

The service's instances are distributed across different servers. Load balancing logic is built into the
client; it maintains a list of servers and uses an algorithm to determine which server a given request
should be sent to. Software load balancers are another name for client-side load balancers [38].

1.6 Auto-Scaling in Microservice

Auto-scaling is a cloud computing technology provided by Amazon Web Services (AWS) that lets
customers deploy or terminate virtual instances based on predefined criteria, health status checks,
and scheduling [14]. As defined by [14], It automates the provisioning of system capacity to
applications. "In cloud IaaS and PaaS solutions, auto-scaling is a popular feature.

In cloud computing systems, the auto-scaling technique enables on-demand resource availability
based on specific workloads. The auto-scaling service provides capacity management strategies to
be configured and used to dynamically decide whether to acquire or release resource instances for a
certain application [25]. Academics and cloud technology vendors have defined the concept with
differing degrees of clarity in a variety of scenarios. In academic words, auto-scaling is a feature of
cloud computing infrastructures that enables the dynamic provisioning of virtualized resources [38,
39]. The auto-scaling capacity of services is critical in the cloud computing environment to optimize
cloud operating costs and Quality of Service [40]. The addition of Auto Scaling groups to network
architecture improves the performance and fault tolerance of the application. A load balancer can be
used in architecture to distribute traffic among the instances in auto-scaling groups [25].

Figure 6. Auto-scaling in Amazon Web Service Microservice [41]

To achieve scalability in microservices, auto-scaling is usually considered the key strategy. When it comes to
resource provisioning, scalability, and elasticity, auto-scaling is frequently mentioned.

86 International Journal of Data Science ISSN 2722-2039
 Vol. 3, No. 2, December 2022, pp. 80-92

 Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

Under dynamic workloads, resource provisioning allows a system to scale out and in resources [42]. Improved
scalability is the result of efficient resource provisioning. When demand increases, scalability allows a system
to keep performance by adding or removing hardware resources, which is usually performed by the system
administrator [38].

2. Related work

A cloud-based container microservices application is made up of a collection of small, independent
services that run in their processes and communicate with one another using a lightweight approach.
Over the last few years, a significant amount of research [43, 20, 17, 45] has been focused on the
deployment and management of microservice containers.

Several significant companies, including banks, financial institutions, and worldwide retail outlets,
are utilizing the MS architecture to incrementally, flexibly, and cost-effectively create their services.
Containers have recently gained popularity as a means of deploying MSs across geographically
dispersed clouds. The use of microservices design can provide numerous benefits, including loose
coupling, rapid disaster recovery, and greater resilience in the case of a network failure. Only a
limited amount of the service is affected. The entire system will not be jeopardized as a result of a
single failure [45]. Microservices are easy to use, but they have their own set of problems. As the
size of the application grows, so does the number of API requests, necessitating the use of a load
balancer to handle API calls across the architecture. Load balancing, which distributes the dynamic
workload over numerous nodes to ensure that no one resource is overwhelmed or underutilized, is
one of the most challenging tasks in Cloud computing. It is a major problem that impacts the server's
performance and resource consumption. It tries to optimize resources across computer clusters using
network links to increase throughput while minimizing response time. The authors proposed a static
and dynamic load balancing technique for automatic resource usage in [16]. This algorithm
effectively balances the load by minimizing the response time of running applications in the VM and
allocating the load on the servers. In their paper, [48] present a self-organizing optimization strategy
for system load balancing based on VM communications records while minimizing response time
during VM migration. In addition, it improves QoS by minimizing VM downtime, [32] proposes a
chain-oriented load balancing algorithm (COLBA) based entirely on message queues that model the
load balancing problems as a non-cooperative game and leverages Nash bargaining to coordinate
microservice allocation across chains to reduce response time.

To increase the performance of existing centralized container orchestration systems, a simple swarm-
like decentralized load balancing system for microservices running inside OpenVZ containers was
presented [31]. In contrast, [24] proposed an improved particle algorithm for resource load balancing
optimization in the cloud environment, which takes into account the characteristics of complex
networks to develop a corresponding resource-task allocation model for archiving preferable
performance cloud-computing environments to improve containers’ microservice QoS.

Researchers, on the other hand, have used a different type of auto-scaling algorithms in a cloud
context to scale out/down resources based on the current load of Physical Machines (PMs). Without
human intervention, auto-scaling is a mechanism for automatically adjusting resources provisioned
to applications based on real-time demands. It enables application providers to reduce their cloud
resource expenses while still achieving their customers' QoS standards. Designing and implementing
an auto-scalar, on the other hand, is a difficult task. Many studies have been conducted on this topic,
and many auto-scalars with various properties have been proposed.

A Virtual Hadoop framework was developed to scale out the processing resources necessary for the
applications to appease the stated real-time requirements [47]. For heterogeneous computing
systems, the authors upgraded their resource inference and allocation approaches. To create an
automated system for managing the entire application via scale-out / in with IaaS, a new auto-scaling
microservice framework based on predicted workload, as well as an artificial neural network,
recurrent neural network, and resource scaling optimization algorithm, were proposed [48].

ISSN 2722-2039 International Journal of Data Science 87
Vol. 3, No. 2, December 2022, pp. 80-92

Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

Meanwhile, the authors of [49, 50] used microservices-based applications to reduce application
deployment costs in DCs and enable auto-scaling of cloud applications as their workload varies.

Interestingly, auto-scaling and load balancing of a system may minimize response time, and
downtime, and distribute workloads uniformly across servers to avoid service failure, protecting
against data loss [50, 17] which is the major challenging task in cloud-based container microservices.

To this extent, it becomes evident that none of the researchers address the issues of auto-scaling and
load balancing for cloud-based container microservices at the same time. Therefore, our research has
been set to explore the combination of load balancing and auto-scaling in cloud-based container
microservices. Integrating load balancing and auto-scaling techniques in cloud-based container
microservices at the same time is critical to improving the performance of the container microservices
cloud-based system. The related works for the proposed research are summarized and presented in
the table below:

Table 1. Related Work Summary

Objective
Constraints

Authors Problems
Addressed

Approach’s QoS Metrics Tools/
Libraries

Limitations

Load
Balancing

Ashwin et al.,
2015

Designed a Particle
Swarm
Optimization-based
technique to
minimize response
time and efficiently
distribute load
across available
VMs.

Modified PSO
Algorithm
algorithm to assign
all jobs uniformly
Calculate and
compare the
response time it
takes to serve
incoming jobs.
Used in Virtual
Machines.

Response
time, Load
distribution

Cloudsim The load
balancing
algorithm is
only main to
allocate/distri
bute the load
in the cloud
environment,
so does not
helps to
stabilize the
swarm
algorithm

Niu et al.,
2018.

Focus on balancing
strategies to reduce
response time and
prevent significant
networking costs
and compete for
shared
microservices
requirements
across chains.

Proposed a chain-
oriented load
balancing algorithm
(COLBA) that
balances load based
on microservices
for message queues.
Enable hybrid
microservice
communication by
mixing HTTP with
a message queue.
Use a convex
optimization
strategy with
rounding in a
constant gap
between the
optimum and the
target.

Response
time
Iteration
Times

Trace-
driven
simulation
s

Their work
proposes
balancing load
across
microservices
while taking
request
heterogeneity
and inter-
chain
competition
into account
but fails to
scale in/out
the load across
microservices.

Auto-
Scaling

Guan et al.,
2017

Designed a unique
application
Oriented Docker
Container (AODC)-
based resource

Develop a scalable
algorithm with a
diverse set of
dynamic
applications and

Total energy
cost
Acceptance
ratio
Response

Docker
Container

The designed
framework is
only main to
minimize the
application

88 International Journal of Data Science ISSN 2722-2039
 Vol. 3, No. 2, December 2022, pp. 80-92

 Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

allocation system to
reduce application
deployment costs in
DCs and enable
automated scaling
as cloud application
workloads change.

vast physical
resources.
Based on
application needs
and available
resources,
determines the
number and
capacity of
containers.
For VM placement
(Best Fit-VM), use
a greedy best-fit
algorithm, while for
VM placement
(Best Fit-VM), use
a greedy worst fit
method (Worst Fit-
VM)

time deployment
cost-
constrained
while
satisfying
QoS
requirements
but does not
improve the
performance
of the system
for better QoS
to the users.

Prachitmutita
et al., 2018,

Strive to maintain
the service within
the Service Level
Agreement, the cost
of the servers
charged by the
cloud provider, and
automate the scale-
out / in.

Use auto-scaling
microservices on
infrastructure as a
service under a
Service-Level
Agreement. A cost-
effective
architecture was
used to implement
the automated
system of scaling
servers and services
with proactive and
reactive strategies.
Create the system
via scale-out / in
with Infrastructure
as a Service using
Artificial Neural
Networks,
Recurrent Neural
Networks, and
Resource Scaling
Optimization
Algorithm (IaaS).

Response
Time
Workload
Distribution
Root Mean
Square Error

Artificial
Neural
Network.
Recurrent
Neural
Network.

Their scaling
algorithm
avoids
unnecessary
scaling
actions but
does not
improve
resource
planning and
feedback.

Srirama et
al., 2020.

Focus on reducing
the number of
physical machines
(PMs) in the cloud
data centre by
designing a
heuristic-based
auto-scaling policy,
as well as reducing
the number of
computing
resources wasted.

Use an auto-scaling
policy to suggest a
new container-
aware application
scheduling method
for processing
microservices. The
technique uses the
best-fit lightweight
containers to deploy
desired apps.

Processing
Time
Processing
Cost.
Deployment
time.
Resource’s
utilization

Docker
Swarm,
Google
Cluster
Tracelog

Their method
optimizes
computing
resources by
reducing
overall PM
resource
waste and
balancing
workloads
among them,
but it fails to
adapt to

ISSN 2722-2039 International Journal of Data Science 89
Vol. 3, No. 2, December 2022, pp. 80-92

Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

workload
changes in
container
microservices.

Perez et al.,
2018

Decoupling
complex and
monolithic systems
into smaller
stateless services in
order to reduce
overall processing
time while
maintaining QoS.

Use serverless
computing in
scientific scenarios.
Uses a serverless
execution approach
with massively
parallel event-
driven file
processing.

Throughput
Execution
Time

Docker
Container
AWS
Lambda

Their method
runs a generic
application on
specific
runtime
environments
defined by
Docker
Images stored
in Docker
Hub,
however, it
fails to
increase the
performance
and resource
usage of a
running
Docker
container
application.

3. Results and Discussion

The majority of the pertinent issues regarding load balancing and auto-scaling for Cloud-based
Container Microservices are to avoid the challenges of server overload, traffic spikes, services, or
application failure and to scale up/out the available number of instance servers based on the incoming
loads. This is because so many businesses have built their applications using microservices, which
break down monolithic software into a collection of small services, each of which runs in its
container. The challenges encountered during the microservices communication process included
server overload, server failure, and traffic spikes, making it difficult to provide better QoS to users.
Until now, the vast majority of cloud-based container microservice researchers have proposed
solutions based on one or two constraints (Load balancing and Auto-scaling). Most related research
works in cloud-based container microservices that deal with load balancing and auto-scaling fall
short of being effective for better QoS to users [16, 17, 46, 48]. Most current cloud-based container
microservices address the problems of workload distribution, response time, and scalability using
either load balancing or auto-scaling. It was also discovered that the load balancing and auto-scaling
objective constraints interact with one another. Auto-scaling performance has a direct impact on or
influences load balancing performance. The cloud-based system's key features are load balancing
and auto-scaling, which are in charge of adjusting available resources to meet user QoS demands.
Load balancing by itself reduces response time and distributes workloads evenly across servers.
However, there is still a need for the services infrastructure to be automatically scaled up/down
during low/high service activity. This issue could be auto-scaled based on service availability,
allowing instances to be dynamically increased or decreased based on loads.

4. Conclusion

This paper looked at the most critical issues related to load balancing and auto-scaling for Cloud-
based Container microservices in great detail. Microservice architecture, cloud-based microservices,
container microservices, load balancing, and auto-scaling problems in microservices are just a few
of the topics addressed. The important issues related to load balancing and auto-scaling in cloud-
based container microservices were addressed in order to enhance performance and QoS for users.
Our future work will include the implementation of load balancing and auto-scaling hybrid features

90 International Journal of Data Science ISSN 2722-2039
 Vol. 3, No. 2, December 2022, pp. 80-92

 Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

in real-time cloud-based container microservices and analyzing docker container features in a
microservice cloud-based environment to optimize workload delivery, response time, and scalability.

References

[1] S. Li, “Understanding quality attributes in microservice architecture,” Proc. - 2017 24th Asia-Pacific Softw. Eng.
Conf. Work. APSECW 2017, vol. 2018-Janua, pp. 9–10, 2018, doi: 10.1109/APSECW.2017.33.

[2] S. Zhuo, “A HIGH AVAILABILITY AND HIGH RELIABILITY MICROSERVICES ARCHITECTURE By,”
no. August, 2020.

[3] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to Cloud-Native architectures using microservices: An
experience report,” Commun. Comput. Inf. Sci., vol. 567, no. July, pp. 201–215, 2016, doi: 10.1007/978-3-319-
33313-7_15.

[4] N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, and J. Nieh, “Synapse: A microservices architecture for
heterogeneous-database web applications,” Proc. 10th Eur. Conf. Comput. Syst. EuroSys 2015, 2015, doi:
10.1145/2741948.2741975.

[5] H. Zhao, H. Lim, M. Hanif, and C. Lee, “Predictive Container Auto-Scaling for Cloud-Native Applications,” ICTC
2019 - 10th Int. Conf. ICT Converg. ICT Converg. Lead. Auton. Futur., pp. 1280–1282, 2019, doi:
10.1109/ICTC46691.2019.8939932.

[6] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, and S. Gil, “Evaluating the Monolithic and the
Microservice Architecture Pattern to Deploy Web Applications in the Cloud Evaluando el Patrón de Arquitectura
Monolítica y de Micro Servicios Para Desplegar Aplicaciones en la Nube,” 10th Comput. Colomb. Conf., pp. 583–
590, 2015.

[7] T. Erl, J. Fontenla, M. Caeiro, and M. Llamas, “Web Services and Contemporary SOA,” Serv. Architecture
Concepts, Technol., Des., pp. 25–81, 2005.

[8] D. Bhamare, M. Samaka, A. Erbad, R. Jain, and L. Gupta, “Exploring microservices for enhancing internet QoS,”
Trans. Emerg. Telecommun. Technol., vol. 29, no. 11, 2018, doi: 10.1002/ett.3445.

[9] A. Sundberg, “A study on load balancing within microservices architecture,” 2019.

[10] J. A. Valdivia, X. Limon, and K. Cortes-Verdin, “Quality attributes in patterns related to microservice architecture:
a Systematic Literature Review,” pp. 181–190, 2020, doi: 10.1109/conisoft.2019.00034.

[11] Z. Ding, S. Wang, and M. Pan, “QoS-Constrained Service Selection for Networked Microservices,” IEEE Access,
vol. 8, pp. 39285–39299, 2020, doi: 10.1109/ACCESS.2020.2974188.

[12] Y. Gan et al., “An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications
for Cloud & Edge Systems,” 2019.

[13] M. Villamizar et al., “Cost comparison of running web applications in the cloud using monolithic, microservice,
and AWS Lambda architectures,” Serv. Oriented Comput. Appl., vol. 11, no. 2, pp. 233–247, 2017, doi:
10.1007/s11761-017-0208-y.

[14] A. Hanieh, L. Yan, and H.-L. Abdelwahab, “Analyzing Auto-scaling Issues in Cloud Environments,” Proc. 24th
Annu. Int. Conf. Comput. Sci. Softw. Eng. IBM Corp., no. March 2015, pp. 75–89, 2014.

[15] Y. Gan and C. Delimitrou, “The Architectural Implications of Cloud Microservices,” vol. 17, no. 2, pp. 155–158,
2018.

[16] A. Dave, B. Patel, G. Bhatt, and Y. Vora, “Load balancing in cloud computing using particle swarm optimization
on Xen Server,” 2017 Nirma Univ. Int. Conf. Eng. NUiCONE 2017, vol. 2018-Janua, pp. 1–6, 2018, doi:
10.1109/NUICONE.2017.8325618.

[17] S. N. Srirama, M. Adhikari, and S. Paul, “Application deployment using containers with auto-scaling for
microservices in cloud environment,” J. Netw. Comput. Appl., vol. 160, no. August 2019, 2020, doi:
10.1016/j.jnca.2020.102629.

[18] V. Singh and S. K. Peddoju, “Container-based microservice architecture for cloud applications,” Proceeding - IEEE
Int. Conf. Comput. Commun. Autom. ICCCA 2017, vol. 2017-Janua, pp. 847–852, 2017, doi:
10.1109/CCAA.2017.8229914.

[19] E. Casalicchio and V. Perciballi, “Auto-Scaling of Containers: The Impact of Relative and Absolute Metrics,” Proc.
- 2017 IEEE 2nd Int. Work. Found. Appl. Self* Syst. FAS*W 2017, pp. 207–214, 2017, doi: 10.1109/FAS-
W.2017.149.

ISSN 2722-2039 International Journal of Data Science 91
Vol. 3, No. 2, December 2022, pp. 80-92

Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

[20] X. Wan, X. Guan, T. Wang, G. Bai, and B. Y. Choi, “Application deployment using Microservice and Docker
containers: Framework and optimization,” J. Netw. Comput. Appl., vol. 119, no. December 2017, pp. 97–109,
2018, doi: 10.1016/j.jnca.2018.07.003.

[21] M. V. L. N. Venugopal, “Containerized Microservices architecture,” Int. J. Eng. Comput. Sci., vol. 6, no. 11, 2017,
doi: 10.18535/ijecs/v6i11.20.

[22] NetApp, “What are Microservices?” 2020. [Online]. Available: https://www.netapp.com/knowledge-center/what-
are-microservices/.

[23] S. Sharma, Mastering microservices with Java 9: build domain-driven microservice-based applications with Spring,
Spring Cloud, and Angular. 2017.

[24] K. Pan and J. Chen, “Load balancing in cloud computing environment based on an improved particle swarm
optimization,” Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, vol. 2015-Novem, pp. 595–598, 2015, doi:
10.1109/ICSESS.2015.7339128.

[25] A. R and J. Agarkhed, “Evaluation of Auto Scaling and Load Balancing Features in Cloud,” Int. J. Comput. Appl.,
vol. 117, no. 6, pp. 30–33, 2015, doi: 10.5120/20561-2949.

[26] A. M. Alakeel, “A Guide to Dynamic Load Balancing in Distributed Computer Systems,” vol. 10, no. 6, pp. 153–
160, 2010.

[27] P. B. Agavane, “Improve Load Balancing Performance and Efficiency Using Equally Spread Current Execution
Algorithm working with response time clustering in Microservices.”

[28] M. Yakut, “Load Balancing In Microservices,” 2020. [Online]. Available: https://mesutyakut.medium.com/load-
balancing-in-microservices-474ad84b847d#:~:text=Load balancing is the process, Round Robin%2C Least
Connections etc.

[29] M. D. Cojocaru, A. Oprescu, and A. Uta, “Attributes assessing the quality of microservices automatically
decomposed from monolithic applications,” Proc. - 2019 18th Int. Symp. Parallel Distrib. Comput. ISPDC 2019,
no. June, pp. 84–93, 2019, doi: 10.1109/ISPDC.2019.00021.

[30] N. Erl, “Microservice and Containerization Patterns,” 2019. [Online]. Available:
https://patterns.arcitura.com/microservice-patterns/design_patterns/workload_distribution.

[31] M. Rusek, D. Rzegorz, and A. Orłowski, “A decentralized system for load balancing of containerized microservices
in the cloud,” Int. Conf. Syst. Sci., vol. 539, no. November, pp. 142–152, 2016, doi: 10.1007/978-3-319-48944-5.

[32] Y. Niu, F. Liu, and Z. Li, “Load Balancing Across Microservices,” Proc. - IEEE INFOCOM, vol. 2018-April, pp.
198–206, 2018, doi: 10.1109/INFOCOM.2018.8486300.

[33] T. Le Duc, R. G. Leiva, P. Casari, and P. O. Östberg, “Machine learning methods for reliable resource provisioning
in edge-cloud computing: A survey,” ACM Comput. Surv., vol. 52, no. 5, 2019, doi: 10.1145/3341145.

[34] C. Yi, X. Zhang, and W. Cao, “Dynamic weight based load balancing for microservice cluster,” ACM Int. Conf.
Proceeding Ser., 2018, doi: 10.1145/3207677.3277955.

[35] C. Heggem, “Container Load Balancing,” 2019.

[36] J. Tpoint, “Client-Side Load Balancing with Ribbon,” 2018. [Online]. Available:
https://www.javatpoint.com/client-side-load-balancing-with-ribbon.

[37] D. Kumar, “Load balancing Spring Boot Microservices using Netflix’s Ribbon,” 2020. [Online]. Available:
https://www.studytonight.com/post/load-balancing-spring-boot-microservices-using-netflixs-ribbon.

[38] N. Ma, A. Maghari, N. Sarkissian, and W. Clark Lambert, “Parakeratosis: What it is and what it is not,” Skinmed,
vol. 8, no. 6, pp. 361–362, 2010.

[39] N. M. Calcavecchia, B. A. Caprarescu, E. Di Nitto, D. J. Dubois, and D. Petcu, “DEPAS: A decentralized
probabilistic algorithm for auto-scaling,” Computing, vol. 94, no. 8–10, pp. 701–730, 2012, doi: 10.1007/s00607-
012-0198-8.

[40] H. Zhao, H. Lim, M. Hanif, and C. Lee, “Predictive Container Auto-Scaling for Cloud-Native Applications,” ICTC
2019 - 10th Int. Conf. ICT Converg. ICT Converg. Lead. Auton. Futur., pp. 1280–1282, 2019, doi:
10.1109/ICTC46691.2019.8939932.

[41] A. W. Service, “Amazon EC2 Auto Scaling benefits,” 2021. [Online]. Available:
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-benefits.html.

[42] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource provisioning for read intensive multi-tier
applications in the cloud,” Futur. Gener. Comput. Syst., vol. 27, no. 6, pp. 871–879, 2011, doi:
10.1016/j.future.2010.10.016.

92 International Journal of Data Science ISSN 2722-2039
 Vol. 3, No. 2, December 2022, pp. 80-92

 Shamsuddeen Rabiu et.al (A Cloud-Based Container Microservices: A Review …)

[43] M. Lin, J. Xi, and W. Bai, “Ant Colony Algorithm for Multi-Objective Optimization of Container-Based
Microservice Scheduling in Cloud,” IEEE Access, vol. 7, pp. 83088–83100, 2019, doi:
10.1109/ACCESS.2019.2924414.

[44] M. Vijayalakshmi, D. Yakobu, D. Veeraiah, and N. G. Rao, “Automatic Healing of Services in Cloud Computing
Environment,” no. 978, pp. 740–745, 2016.

[45] M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi, and G. Zavattaro, Optimal and automated deployment for
microservices, vol. 11424 LNCS. Springer International Publishing, 2019.

[46] S. Aslanzadeh and Z. Chaczko, “Load balancing optimization in cloud computing: Applying Endocrine-particale
swarm optimization,” IEEE Int. Conf. Electro Inf. Technol., vol. 2015-June, pp. 165–169, 2015, doi:
10.1109/EIT.2015.7293424.

[47] Y.-W. Chen, S.-H. Hung, C.-H. Tu, and C. W. Yeh, “Virtual Hadoop,” pp. 201–206, 2016, doi:
10.1145/2987386.2987408.

[48] I. Prachitmutita, W. Aittinonmongkol, N. Pojjanasuksakul, and M. Supattatham, “Auto - scaling microservices on
IaaS under SLA with cost - effective Framework,” pp. 583–588, 2018.

[49] X. Guan, X. Wan, B. Choi, S. Song, and J. Zhu, “Application Oriented Dynamic Resource Allocation for Data
Centers Using Docker Containers,” vol. 1, no. c, pp. 1–4, 2016, doi: 10.1109/LCOMM.2016.2644658.

[50] B. Stevant, J. L. Pazat, and A. Blanc, “Optimizing the Performance of a Microservice-Based Application Deployed
on User-Provided Devices,” Proc. - 17th Int. Symp. Parallel Distrib. Comput. ISPDC 2018, pp. 133–140, 2018,
doi: 10.1109/ISPDC2018.2018.00027.

[51] V. Podolskiy, A. Jindal, and M. Gerndt, “Multilayered Autoscaling Performance Evaluation: Can Virtual Machines
and Containers Co-Scale?” Int. J. Appl. Math. Comput. Sci., vol. 29, no. 2, pp. 227–244, 2019, doi: 10.2478/amcs-
2019-0017.

