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1. Introduction  

The central highlands of West Papua are an integral part of the province of Papua, which is the 

easternmost province of Indonesia (Fig. 1). The region has a complex landscape, with rugged and 
hilly terrain. Notably, some of Indonesia’s highest peaks, including Carstensz Pyramid (5030 

m.a.s.l.), Trikora Peak (4730 m.a.s.l.), Yamin Peak (4595 m.a.s.l.), and Mandala Peak (4700 m.a.s.l.), 

are located within the central highlands of West Papua. The intricate geomorphological features of 

the area are a manifestation of the geological and tectonic processes that have shaped its topography.  

According to [31], the formation of the Papua Island emerged from the subduction process between 

the Australian Plate and the Pacific Plate. This convergent process and the resultant deformation of 

these plates commenced in the Eocene era and have persisted up to the present day [7]. The Australian 

Plate, lying beneath the Arafura Sea and extending northward, forms the foundation of the southern 
segment of the central highlands of West Papua. This foundation comprises sedimentary rocks of 

various ages, ranging from Palaeozoic to Mid-Quaternary [11].  

Stretching from the equator to 12°S, the central highlands of West Papua qualify as a tropical region 

largely influenced by the monsoonal asymmetric cycle, akin to the prevailing conditions across much 
of the Indonesian Maritime Continent (IMC) ([32], [28], [6], [40]). In tandem with these monsoonal 
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influences, the area is subject to localized effects, including mountain deflection and local warming, 

which exert control over rainfall patterns [4]. Additionally, the El Niño-Southern Oscillation (ENSO) 

phenomenon leaves its imprint on the seasonal rainfall dynamics in Papua; El Niño events, for 

instance, can lead to reduced rainfall in the region [29]. 

The central highlands of West Papua experience varying precipitation levels ranging from 2500 to 

4500 mm/year. The number of rainy days varies from 148 to 175 per year, while average surface air 

temperatures fluctuate between 29°C and 31.8°C. Relative humidity in the area ranges between 79% 

and 81%. Consequently, the central highlands of Papua emerge as one of the most moisture-laden 

regions within the IMC [26]. 

 

Figure 1. Digital Elevation Model (DEM) of the central highlands of West Papua (rendered using PyGMT 

[37]) 

Studies investigating the rainfall characteristics of the Papua region are scarce, making it difficult for 

researchers to access relevant information. This scarcity may be due to the intricate topography 

prevalent in the area, which makes conventional numerical approaches challenging to investigate (e. 
g. [14], [8], [24], [9]). Additionally, the limitations imposed by the aerial distribution of rain gauges 

and radar networks, under the purview of the Indonesian Agency for Meteorology, Climatology and 

Geophysics (BMKG), could contribute to this shortage [39]. 

To address this issue, we propose a data-driven approach [30]. By leveraging ERA5 monthly 

averaged data at single levels [20], we aim to uncover the attributes and predictability of long-term 
precipitation time series across the central highlands of Papua. This approach offers an alternative 

means of examining and understanding the nuanced aspects of rainfall behaviour in the region, 

circumventing the challenges posed by complex terrain and sparse meteorological instrumentation. 

2. Materials and Methods 

2.1 Long-term Drought / Pluvial Time-series Reconstruction 

This subsection focuses on reconstructing long-term meteorological droughts and pluvial events in 

the central highlands of West Papua. To quantitatively assess these occurrences, we used the SPI-12 
index [27], [17]). This index is a well-established metric for evaluating extended meteorological 

droughts and pluvial periods. Its effectiveness in reconstructing droughts spanning the past 

millennium within the Indonesian Maritime Continent (IMC) has been documented [19]. 

Our initial step entailed computing the spatial average of terrestrial precipitation across the central 

high lands of West Papua, utilizing the ERA5 monthly averaged data on single levels [20]. 

Mathematically defined in equation (1), the spatial average for a precipitation field ��ф, �, �� on a 

spherical surface [34] is expressed as: 
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�̅��� = ��
 ∬ ��ф, �, �� ����ф��ф��                                  (1) 

Where ф is latitude, � is longitude, and � is time. To handle the gridded dataset, a discretized form 

of equation (1) was needed. The discrete form of equation (1) for a grid resolution ∆ф × ∆� is defined 

in equation (2): 

�̅��� = ∑ ���, �, ���,� ����ф�,� ∆ф∆!�
                                   (2) 

Where �, � are coordinate indices for each the grid box of precipitation data over the central highlands 

of West Papua, and ф and � are in radian. Since ERA5 precipitation data has a spatial resolution of 

0.25°× 0.25°, then ∆ф = ∆� =  �0.25/180�) =  π/720. By substituting this information into 

equation (2), the following equation was obtained: 

�̅��� = ∑ ���, �, ���,� ����ф�,� ��/,-.�/
�                         (3) 

We solved the calculation in the equation (3) using the built-in function in the xarray library [22] in 

the Python computational environment. 

The spatial average of monthly precipitation was used to calculate SPI-12. SPI-12 involves 
comparing the rainfall over 12 consecutive months with the corresponding 12 months from preceding 

years. This temporal scale provides insights into long-term rainfall patterns ([27], [17]). The SPI at 

this scale represents the cumulative effect of prior periods that could have been either above or below 

the normal range. Correlations can be observed between SPI-12 and stream flows, reservoir 
conditions, and even groundwater levels. In several countries, SPI-12 has exhibited the closest 

correlation with the Palmer Drought Severity Index (PDSI), leading some to suggest that both indices 

reflect the same conditions [16]. 

SPI was calculated using statistical methods as follows: 

0�1� = 2 3�1, 45, 678. ��1 = �9: ;< =�><� 2 1><?�@?8/9:8.                        (4) 

Where 4 is a shape parameter, 6 is a scale parameter, A�4�  is a gamma function, and 1 is 

precipitation values. Equation (4) applies if 1 >  0 (otherwise 3�1, 45, 67 = 0, which in this case 

applied to precipitation data which are always within the range �0, +∞�. In order to match the gamma 

distribution with precipitation data, it was necessary to estimate the 4 and 6 parameters using the 

maximum likelihood approximation which is defined as follows: 

45 = ��E F1 + G�EH I                         (5) 

67 = 8̅><                                        (6) 

Where J is defined by equation (7), 

J = KL�1̅�  − ∑ NO�8�O                          (7) 

Where L is the number of observations. For 45 > 0, A�45�  is defined by equation (8), 

A�45� = 2 1><?�@?8PQ. �1                                      (8) 
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The gamma distribution is undefined for 1 = 0 and R = S�1 = 0� > 0, where R is the probability of 

zero percipitation. Therefore, the cumulative probability distribution is defined by equation (9): T�1� = R + �1 − R�0�1�                         (9) 

The gamma distribution 0�1� was then converted to be a normal standard with zero mean and 

standard deviation of one, so that the SPI index U was obtained using equation (10): 

U = V−� − �WP�XYP�/Y/�PZXYPZ/Y/PZ[Y[  ,   \�] 0 < T�1� ≤ 0.5
� − �WP�XYP�/Y/�PZXYPZ/Y/PZ[Y[  ,   \�] 0.5 < T�1� < 1              (10)  

Where � is defined by equation (11): 

� =
⎩⎨
⎧ GKL c ��d�8��/e  ,   \�] 0 < T�1� ≤ 0.5

GKL c ���?d�8��/e  ,   \�] 0.5 < T�1� < 1              (11) 

And the constants are defined as follows: 

⎩⎪⎨
⎪⎧�Wg-.h�i,�Xg..j.H,�/g...�,ZXg�.�HH,Z/g..�.k,Z[g....�.

                         (12) 

In order to simplify the calculation process, we used the SPEI package [3] in the R computational 

environment. 

2.2        Identifying ENSO-driven Pattern in SPI-12 

The influence of the ENSO signal within the IMC ([29], [39], [41]) is an important aspect that must 

be considered when analyzing drought and pluvial events in the central highlands of West Papua. 
This subsection provides a comprehensive examination of the temporal effects of ENSO on SPI-12, 

using the Multivariate ENSO Index (MEI) [38]. To assess the impact of ENSO on drought and pluvial 

occurrences in the study area over time, we utilized wavelet transforms, a prevalent algorithm for 
analyzing geophysical signal patterns. Wavelet transforms have an advantage over other power 

spectrum methods as they can capture non-linear signals within time series data by utilizing discrete 

wave packets (wavelets) with inherently smooth terminations, instead of the conventional use of sine 

and cosine wave functions [25]. 

In this study we used an extension of the Morlet wavelet (l) [36] to model ENSO and SPI-12 signals, 

which is defined by: 

l��� = @?Xm@?�nWY@?X/Y/ , � = 1,2,3, …                          (13) 

Where � is the position where the wavelet operates in a time series with a narrow range of 

observations. 

In general, wavelets have two main components, namely time or position q and frequency \. The q 

parameter has an important role in detecting the exact location of a wavelet by relocating the wavelet 

over a period of time, while \ is useful for monitoring the convex wavelet to localize different 

frequencies. By transforming l,, we got the lr,s  parameter as follows: 
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lr,s ��� = �√u l cY?rs e , q, \ ∈ w, \ ≠ 0                          (14) 

Equation (15) describes the modeling of a time series 1��� into a wavelet transform, 

y8 �q, \� = 2 1��� �zs l cY?rs e ��PQ?Q                           (15) 

The signal power in the time series 1��� itself was measured using the wavelet power spectrum yS{1�q, \� which is defined as follows: yS{8 �q, \� = |y8�q, \�|-                          (16) 

In order to simplify the process of calculating the continuous wavelet power spectrum on ENSO and 

SPI-12 data, we used the PyCWT library [23] in the Python computational environment. 

To measure the relationship between the two quantitatively, we needed another mathematical tool, 

namely the wavelet coherence (WTC). We used WTC to find time-frequency-based causality 

between two time-series data, in this context MEI. 1��� and SPI-12 }���. The first step we take was 

to find the cross-wavelet transforms (XWT) of the two time-series data (equation (17)): 

y8~ �q, \� = y8�q, \� y~�q, \������������                          (17) 

Where y�� �q, \� is the XWT of the two time-series data. Then to find WTC value, the equation (18) 

was used as follows: 

w-�q, \� = �∁�s�X ����r,s� �/
∁�s�X| ���r,s�|/� ∁cs�X� ���r,s��/e                           (18) 

∁ parameter shows the time and smoothing process over the duration of time in within the range of 0 ≤ w-�q, \� ≤ 1. When w-�q, \� approaches one, a strong correlation can be expected between 

MEI and SPI-12. Conversely, if w-�q, \� is zero, then there is no correlation between the two 

variables. To find out the positive or negative correlation of the two time-series data, we use the 

phase difference equation (equation (19)) as follows: 

ф8~�q, \� = �]���L �ℑ�∁�s�X����r,s� �ℜ�∁�s�X����r,s� ��                          (19) 

Where ℜ shows the real part and ℑ shows the imaginary part. To simplify the WTC calculation 

process, we used the open-source MATLAB® Toolbox by [15]. 

 

2.3        ENSO - SPI-12 Dynamic and Predictability 

To ensure accurate SPI-12 predictions, we used the Nonlinear Autoregressive with Exogenous input 

neural networks (NARX) model. This model was effective in capturing the dynamic relationship 

between ENSO and long-term drought/pluvial events in the central highlands of West Papua. NARX, 
a type of recurrent dynamic neural network, is commonly used to model non-linear associations 

within attributes across time series data ([10], [2], [5]). Fig. 2 provides a schematic representation of 

the simplified NARX structure. Input data was introduced into delayed units, which served as 

memory repositories for previous inputs. Outputs derived from the NARX model were also stored 

within delayed units and then directed into hidden units for further processing. 

NARX model is defined as a nonlinear mapping function \ [10] as follows: 

}Y = \ c}Y?�, }Y?-, … , }Y?Z� , 1Y?� , 1Y?- , … , 1Y?Z�e           (20) 
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Where } is a target (SPI-12) and 1 are attributes (MEI); and �1 �  1, �} �  1, �} �  �1 are delays. 

The nonlinear \ function itself is generally unknown, and must be approximated using the existing 

data. There are various ways to approximate this function, in this study we use multilayer perceptrons 
provided by PyNeurGen library [35] in the Python computational environment. We used 1-time steps 

of delay for each of the input �1� and output �}� attributes. In addition, we also split incoming 

weights, 60% for MEI and 30% for SPI-12. We made use of the following sigmoid function for 

activation of the perceptrons: 

{�1� = ��P���                          (21) 

We divided SPI-12 into two parts, 85% for the training set and 15% (January 1980 - December 2014) 
for the testing set (January 2015 - December 2020). We used a moderate steps of learning rate of 

35% for the optimization process using the Stochastic Gradient Descent (SGD) algorithm. Our 

NARX model was run for 10 epochs without activating the random testing parameter to maintain the 
order of time-series data. To evaluate the model performance, we used the Mean Squared Error 

(MSE) which is shown by equation (22) below: 

�{� = �O ∑ �}̂� − }� -O�g�                           (22) 

Which is the sum series of the squared differences of the observed target }� and predicted values }�̂, 
which was then divided by the total number of test samples L. 

 

Figure 2. Simple schematic diagram of NARX model 

3. Results and Discussion 

The calculation result of Equation (3) is the spatial average of monthly precipitation time-

series shown in Fig. 3. Fig.3 shows that rainfall events occurred in each month of the study 

period. To examine the pattern of monthly rainfall, we averaged the data for each month, as 

shown in Fig. 4. It can be observed from Fig. 4 that the monthly rainfall pattern in the central 

highlands of West Papua has one peak and one trough, which corresponds to the rainfall 

pattern in Region A [1], but with a shift in the onset of wet and dry seasons due to other local 

factors. The seasonal rainfall patterns over the central highlands of West Papua (Fig. 4) 

exhibit an asymmetric pattern between boreal summer and winter, and between boreal spring 

and fall. 
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Figure 3. Variations in the normalized monthly precipitation data from ERA5 over the central highlands of 

West Papua from January 1979 to December 2020 

 

Figure 4. Normalized average monthly precipitation over the central highlands of Papua 

Fig. 5 shows the result of the SPI-12 reconstruction from January 1980 to December 2020. 

There are similarities between WPS and ENSO (Fig. 6) as well as SPI-12 (Fig. 7). To 
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establish the relationship between SPI-12 and MEI more rigorously, a meticulous WTC 

computation was undertaken. The results of this WTC calculation are elegantly presented in 

Fig. 8, providing a graphical illustration that effectively encapsulates the derived results. 

 

Figure 5. SPI values over the central highlands of West Papua from January 1980 to December 2020 with a 

12-month time scale. Negative SPI-12 describes dry conditions (red), whereas positive SPI-12 describes wet 

conditions (blue). 

 

Figure 6. Continuous wavelets transform for the SPI-12. These plots clearly show significant periodicity at 2 

- 8-year cycle. 
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Figure 7. Continuous wavelets transform for the MEI. These plots clearly show significant periodicity at 2 -8-

year cycle. 

 

Figure 8. Wavelet coherence between MEI and SPI-12. The colour scale on the right side of the figure 

represents the level of correlation between ENSO and long-term meteorological drought/pluvial events over 
the central highlands of West Papua. The light-yellow colour indicates high correlations among the variables, 

while the thick black contour designates the 5% significance level against red noise and the cone of influence 

(COI) where edge effects might distort the picture is shown as a lighter shade. The arrows show the phasing 

direction (right: in-phase, left: anti-phase, down: MEI leading SPI-12 by π/2, up: SPI-12 leading MEI by π/2). 

As seen in Fig. 8, WTC can capture the inversely proportional relationship between MEI 

and SPI-12 at 32-to-128-month periodicity. This causal effect reveals that precipitation over 

the central highlands of West Papua increases during La Niña and decreases during El Niño. 
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The MSE of NARX model at each training epoch can be seen in Fig. 9. It exhibits sharp 

decline at the first epoch and finally leveling out until the end of the last training epoch. The 

overall MSE evaluation result in the test set is 0.011. The comparison between the NARX 

model prediction results and the actual SPI-12 is shown in Fig. 10. Overall, the model tends 

to overestimate and underestimate certain extreme values, although it adequately captures 

the general pattern of SPI-12. 

 

Figure 9. MSE by epoch for NARX model 

 

Figure 10. Actual y (red) and predicted ŷ (blue) SPI-12 values for NARX model 

4. Conclusion 

Our research endeavors involved a thorough analysis of the SPI-12 time series dataset, which covers 

the central highlands of West Papua. Through a rigorous exploration, we aimed to unravel the 
complex relationships within this dataset, focusing specifically on the teleconnection pattern between 

ENSO and hydrometeorological drought/pluvial events in this region. We used wavelet 

transformations to investigate the underlying connections. 

Our meticulous investigation led us to discover a discernible and noteworthy teleconnection pattern 
between ENSO and hydrometeorological drought/pluvial events in the central highlands of West 

Papua. We unraveled the complex web of relationships between these factors using wavelet 

transformations, revealing a finely woven tapestry of associations. Our analysis showed a significant 

and negative correlation between ENSO and the prevailing long-term rainfall patterns in this region. 

This finding is crucial in understanding the dynamics of climatic events in this area. 

Using the patterns discerned from the wavelet coherence (WTC) analysis, we constructed a model 

that could encapsulate the nuanced temporal dynamics between ENSO and the intricate long-term 

rainfall patterns. We used the NARX algorithm, renowned for its efficacy in capturing complex non-
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linear relationships. The NARX model enabled us to delve deeper into the interplay of climatic 

variables. 

The predictions gleaned from the NARX model demonstrated its effectiveness in capturing the 

overarching trends embedded within the complex interdependence of ENSO and long-term rainfall 
patterns. The model’s ability to encapsulate these trends augments our understanding of the 

underlying dynamics that govern these climatic phenomena. By distilling intricate data patterns into 

comprehensible insights, the NARX model emerges as a valuable asset in unraveling the complex 

tapestry of climatic interactions. 

Our study’s findings suggest potential avenues for further exploration and refinement. One avenue 
involves applying diverse, finely tuned optimization strategies to the NARX model, drawing 

inspiration from the work of [18]. Implementing early-stopping algorithms, as advocated by [12], is 

also significant to prevent overfitting during model training. 

In addition to the NARX model, we need to conduct a comprehensive comparison involving a 
spectrum of robust sequence-to-sequence (seq2seq) machine learning algorithms. These include the 

Long-Short Term Memory (LSTM) [21], the Gated Recurrent Unit (GRU) [13], and the DeepAR 

model [33]. This evaluation aims to determine the optimal time-series model that faithfully 

encapsulates the intricate interplay of climatic variables in our dataset. 

Our study also highlights the importance of comparing our findings with the outputs derived from 
Global Climate Models (GCMs). This comparative analysis can potentially illuminate the intricate 

physical processes underpinning the spatio-temporal dynamics connecting ENSO and long-term 

rainfall patterns across the central highlands of West Papua. In doing so, we can achieve a more 

holistic comprehension of the complex interactions that govern the climatic landscape of this region. 
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