
International Journal of Data Science          ISSN 2722-2039 
Vol. 5, No. 1, June 2024, pp. 33-49  33 

 

           

Improving Acute Leukemia Classification through Recursive 
Feature Elimination and Multilayer Perceptron Analysis of 
Gene Expression Data 

Temitope Elizabeth Ogunbiyi a,1,*, Michael Abejide Adegoke a,2, Adebisi Esther Oluwatosin a,3, 

Bamidele Aremo b,4, Olufemi Adekunle a,5, Emmanuel Ayodele Ayoariyo a,6, Austin Udemba a,7 

a   Department of Computer Science and Information Technology, Bells University of Technology, Ota, Nigeria 
b   Department of Computer Science Education, Federal College of Education (Technical), Akoka, Lagos, Nigeria 
1 elizatope_2005@yahoo.com; 2 adegokebejide@gmail.com; 3 aeoluwatosin@bellsuniversity.edu.ng; 4 adekunleoa@gmail.com;  
5 ariyoemmanuel03@gmail.com; 6 austinudemba@gmail.com; 7 aremobd@gmail.com 

* corresponding author 

 

1. Introduction  

Cancer remains a formidable challenge in modern medicine, with ongoing efforts to better 
understand its molecular underpinnings to enhance diagnosis, classification, and treatment. In 1999, 
Golub et al. pioneered a breakthrough study by utilizing gene expression. It is a complex and 
multifaceted disease, which continues to be a pressing challenge in the realm of medical research. 
Cancer's persistent global significance stems from its wide-ranging and complex impact on public 
health, societies, and healthcare systems (Schmit, Purrington, & Figueiredo, 2023). Its prevalence 
remains a critical concern due to the rising global population and shifting demographics that 
contribute to an increased incidence of cancer cases. This array of diseases, each characterized by 
distinct molecular and clinical traits, challenges healthcare systems (Coury, Miech, Styer, Petrik, & 
Coates, 2021) and necessitates tailored approaches to prevention (Carethers & Doubeni, 2020), early 
detection, and treatment (Slavova-Azmanova, Newton, Hohnen, Johnson, & Saunders, 2019). 
Evolving risk factors, such as modern lifestyles and environmental factors, continually shape cancer 
trends, underscoring the need for adaptable prevention strategies (Huang & Yu, 2018). Moreover, 
the lack of definitive cures for certain cancer types highlights the ongoing urgency of advancing 
treatment research and innovation. Beyond physical health, cancer affects mental well-being, 
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families, and communities, leading to a demand for comprehensive psychosocial support (Thom & 
Benedict, 2019). The strain on healthcare resources and the unequal access to quality care pose 
ongoing challenges, particularly in less developed regions. The collaborative pursuit of research, 
advocacy, and global awareness campaigns is essential to address the multifaceted challenges posed 
by cancer, reflecting a collective determination to mitigate its impact through interdisciplinary efforts 
and advancements in science and healthcare.  

Cancer research holds profound interest for biologists due to its intricate interplay between genetics, 
molecular pathways, and cellular behavior (Pepper, Findlay, & Kassen, 2009). The study of cancer 
provides a unique lens through which to unravel the complexities of cellular growth, mutation, and 
the microenvironment's impact. Investigating the underlying genetic mutations and epigenetic 
changes that drive cancer progression offers insights into fundamental biological processes, 
including cell cycle regulation, signal transduction, and DNA repair mechanisms (Weinberg & 
Weinberg, 2006). Furthermore, the dynamic interactions between tumor cells, neighboring tissues, 
and the immune system illuminate the delicate balance between growth and suppression, shedding 
light on immunological responses and potential therapeutic targets. Ultimately, cancer research not 
only contributes to the understanding of disease mechanisms but also fosters advancements in fields 
such as genomics, bioinformatics, and personalized medicine, driving innovation in biology and 
healthcare (Weinberg & Weinberg, 2006). Cancer's socioeconomic implications generate substantial 
interest globally and among biologists alike. The far-reaching impact of cancer on economies, 
healthcare systems, and individual households underscores its significance (Faggad, Budczies, 
Tchernitsa, & Darb‐Esfahani, 2010). High treatment costs, prolonged care, and productivity losses 
place immense financial strain on patients and families. Healthcare systems face allocation 
challenges as they cope with the demands of diagnosis, treatment, and support services. Biologists 
are drawn to cancer research not only to decipher its biological intricacies but also to contribute to 
solutions for the economic burden it poses (Weinberg & Weinberg, 2006). Developing effective 
prevention strategies, targeted treatments, and affordable interventions has the potential to alleviate 
the socioeconomic disparities exacerbated by cancer (Schmit, Purrington, & Figueiredo, 2023). 
Understanding the intersection between biology and socioeconomic consequences holds promise for 
shaping policies, resource allocation, and public health efforts that mitigate the multifaceted impact 
of cancer on societies and individuals. 

Historical datasets on cancer offer invaluable resources for research, enabling scientists to explore 
the evolution of understanding in the field. These datasets, often spanning decades, encompass a 
wide array of cancer types, clinical outcomes, and molecular profiles. They capture the progress of 
technology and knowledge, allowing researchers to reinterpret and reanalyze the data using modern 
analytical techniques. One notable historical dataset is the work of Golub et al. (Simsek, Badem, & 
Okumus, 2021), which focused on gene expression in acute myeloid leukemia (AML) and acute 
lymphoblastic leukemia (ALL) patients. This dataset, generated through DNA microarrays, paved 
the way for molecular cancer classification. Its availability continues to attract attention, as 
researchers seek to apply cutting-edge methodologies to reexamine the data and extract novel insights 
that were perhaps not apparent at the time of its original publication. The Golub et al. dataset 
exemplifies how revisiting historical data with contemporary tools can lead to transformative 
discoveries, showcasing the timeless value of such resources in advancing cancer research. 

As technology and analytical methods have rapidly evolved since that time, there exists an 
unprecedented opportunity to reevaluate this historic dataset. New data science techniques, including 
Data Visualization, Correlation Analysis, and Differential Expression Analysis, stand poised to 
illuminate latent knowledge within historical cancer datasets, thereby offering vital contributions to 
contemporary cancer research and understanding (Taiwo Olaleye, 2021). Data Visualization, driven 
by advanced visualization tools, enables the exploration of complex gene expression profiles in an 
intuitive manner. This facilitates the identification of trends, outliers, and potential biomarkers that 
might hold relevance in today's cancer landscape. Correlation Analysis, employing sophisticated 
algorithms, unveils intricate relationships between genes, shedding light on potential regulatory 
networks or co-expression patterns that could signify important biological pathways (Ahiara, Abioye, 
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Chiagunye, & Olaleye, 2023). Machine learning for predictive analytics is likewise a data science 
tool of immense potentials (Olaleye T. O., Arogundade, Misra, Abayomi-Alli, & Kose, 2023) which 
could help for predicting cancer severities, identify significant feature attributes for clinical tests (He, 
Chen, Bian, & Yang, 2023). Collectively, these techniques synergize to harness the wealth of 
historical data, revitalizing it as a valuable resource for contemporary researchers seeking actionable 
insights that have the potential to advance our understanding of cancer and drive targeted approaches 
to diagnosis, treatment, and patient care. Situated at the intersection of past breakthroughs and 
contemporary innovation, our endeavor carries the potential to bridge gaps in knowledge that may 
have arisen due to technological limitations of the past. By applying state-of-the-art exploratory data 
analysis methods to this vintage dataset, we aspire to extract overlooked nuances and potentially 
identify gene signatures that could offer new avenues for investigation. Through this process, we aim 
not only to enrich the molecular understanding of AML and ALL but also to showcase the 
significance of revisiting historical datasets with modern tools. 

This translational research (Woolf, 2008) focuses on bridging the gap between scientific discoveries 
and their application in clinical settings, aiming to translate laboratory findings into tangible benefits 
for patients and healthcare practices. This approach involves translating the knowledge gained from 
historical data into practical applications that have the potential to impact current cancer realities. 
Therefore, the challenge lies in effectively harnessing these datasets to extract novel insights that can 
inform contemporary cancer understanding and practices. To address this, our research sets out to 
leverage advanced Data Visualization, Correlation Analysis, and Machine Learning and Feature 
Selection technique to unveil latent patterns within historical cancer datasets. Our main objective is 
to unearth actionable insights that bridge the gap between past findings and present-day cancer 
challenges, ultimately contributing to more precise diagnostic approaches, targeted therapeutic 
strategies, and improved patient outcomes.  The rest of the article is organized in the following ways. 
Section 2 discusses existing literatures on the subject, while section 3 introduces the conceptual 
framework of this study. Result will be discussed in section 4 and the study will be concluded in 
section 5.  

2. Literature Review 

Several studies have attempted to address diverse problem statements on gene expression dataset. 
The actualization of their objectives infers actionable insights into cancer research efforts. Some of 
those studies are reviewed in this section.  

The focus of the work of Simsek et al. (2021) is to enhance leukemia diagnosis through sub-type 
classification using machine learning techniques on gene expression data. With early diagnosis and 
precise treatment being crucial in leukemia management, the study aims to leverage the power of 
gene expression analysis to classify leukemia into Acute Lymphoblastic Leukemia (ALL) and Acute 
Myeloblastic Leukemia (AML) sub-types. Recognizing the significance of timely and accurate 
diagnosis, the study proposes the application of machine learning methods as a valuable tool for 
efficient sub-type identification. The utilization of K-nearest neighbor, Linear Discriminant, Support 
Vector Machine, and Ensemble classifiers underscores the comprehensive approach adopted for this 
purpose. The anticipated results entail a comparative presentation of the outcomes achieved through 
these machine learning techniques, providing insights into their effectiveness for accurate leukemia 
sub-type classification. Ultimately, the study strives to contribute to the advancement of leukemia 
diagnosis and treatment by harnessing gene expression data and modern machine learning 
methodologies. 

In He et al. (2023), the primary objective of the study was to introduce and validate a novel multi-
task learning framework named Multi-Tissue Transcriptome Mapping (MTM), with the aim of 
predicting personalized tissue-specific gene expression profiles. Recognizing the invaluable insights 
that transcriptional profiles offer in both fundamental and translational research, the study addresses 
the challenge of limited transcriptome information for tissues requiring invasive biopsies. The 
proposed MTM framework seeks to circumvent this limitation by leveraging "surrogate" samples, 
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notably blood transcriptomes, to predict tissue expression profiles. Importantly, MTM goes beyond 
existing approaches by considering the shared intrinsic relevance across tissues, thus enhancing 
predictive accuracy. This framework, rooted in deep learning principles, unifies individualized cross-
tissue information from reference samples through multi-task learning, ultimately achieving 
advanced performance in predicting expression profiles for unseen individuals. The study's outcomes 
demonstrate superior sample-level and gene-level predictive capabilities. Notably, MTM's ability to 
accurately capture individualized biological variations holds the potential to significantly impact both 
fundamental research and clinical applications, by providing a robust means to understand and 
predict gene expression profiles in various tissues without invasive procedures. 

Asad and Mollah (2021) introduces an information-theoretic feature selection approach named 
symmetrical uncertainty for biomarker identification from gene expression data. The authors 
effectively employ symmetrical uncertainty to classify gene expression microarray data and detect 
biomarkers. Information gain and symmetrical uncertainty contribute to ranking features, aiding in 
the selection of the most informative ones. The top-ranked features are then fed into well-known 
classifiers like random forest and logistic regression, along with leave-one-out cross-validation, to 
construct optimal classification models and identify pivotal genes from microarray datasets. The 
study's outcomes, measured in terms of classification accuracy, running time, root mean square error, 
and other parameters using leukemia and colon cancer datasets, showcase the method's efficacy. 
Notably, the proposed approach demonstrates substantial advantages, being notably faster compared 
to many other wrapper or ensemble methods commonly used in biomarker identification. 

The paper of Shi et al. (2023) introduces the Human Universal Single Cell Hub (HUSCH), a 
comprehensive and integrated single-cell transcriptome atlas designed to facilitate the visualization 
and analysis of gene expression patterns across diverse human cell types. This research addresses the 
growing need to comprehend cellular heterogeneities within different human tissues for applications 
ranging from cell differentiation mechanisms to disease progression insights. Leveraging the 
advancements in single-cell RNA sequencing (scRNA-seq), HUSCH harmoniously combines data 
from nearly 3 million cells across 185 high-quality human scRNA-seq datasets representing 45 
distinct tissues. These datasets are processed and annotated uniformly to ensure consistency and 
comparability. HUSCH offers an array of functionalities, including interactive gene expression 
visualization, differential expression analysis, functional insights, transcription regulator 
identification, and analyses of cell-cell interactions, all available on a per-cell type cluster basis. 
Additionally, HUSCH excels in its capability to integrate datasets within individual tissue modules, 
managing data integration, batch correction, and harmonization across cell types. This amalgamation 
empowers comprehensive visualization and analysis of gene expression within each tissue, 
leveraging single-cell datasets from various sources and platforms. HUSCH emerges as a versatile 
platform enabling users to search, visualize, analyze, and download single-cell gene expression data, 
thus representing a promising resource for unraveling the complexities of human tissue gene 
expression and its implications across diverse biological contexts. 

The study of Wang et al. (2023) presents a novel approach, Multi-Objective Evolutionary Algorithm 
with Decomposition and Harris Hawks Learning (MOEA/D-HHL), for medical machine learning, 
leveraging a fusion of evolutionary algorithms and harris hawks learning to enhance the effectiveness 
of medical data analysis. The approach aims to address the growing interest in medical machine 
learning, amalgamating insights from computer science and medicine. The proposed MOEA/D-HHL 
demonstrates its capabilities through performance evaluations against established benchmarks 
(DTLZ1-DTLZ7). Subsequently, MOEA/D-HHL is employed to construct machine learning 
algorithms for medical cancer gene expression datasets, considering three key objectives: feature 
selection, classification accuracy, and correlation measures. The study then extends its application to 
real clinical data sets involving lupus nephritis and pulmonary hypertension, demonstrating 
impressive performance metrics. The proposed algorithm outperforms existing methods in both 
cases, reflected by higher Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) 
values. The statistical analysis underscores the predictive capabilities of the algorithm across 
different metrics and accentuates the stability of MOEA/D-HHL as a promising framework for 
advancing medical machine learning. This study's findings highlight MOEA/D-HHL's potential as a 
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potent tool in the emerging field of medical machine learning, promising improved analysis and 
insights from complex medical datasets. 

The paper of Singh et al. (2020) introduces MetaOmGraph (MOG) as a versatile workbench tailored 
for interactive exploratory data analysis of extensive expression datasets. The rising wealth of omics 
data in public domains presents a unique opportunity for uncovering latent insights; however, a 
substantial portion of these archived datasets often goes untapped. MOG emerges as a solution to 
this challenge, offering a free, open-source, standalone software platform that empowers researchers, 
irrespective of coding skills, to seamlessly visualize, assess, and dissect large datasets. The software's 
interactive interface enables researchers to evaluate data with metadata context, facilitating the 
identification of sample or gene groups based on factors like expression values, statistical 
associations, metadata terms, and ontology annotations. A range of interactive visualizations 
including line charts, scatter plots, histograms, and volcano plots enrich the experience, while various 
statistical analyses, such as co-expression, differential expression, and differential correlation, 
provide deeper insights. MOG further facilitates seamless data transfer to R for additional analyses. 
Its ability to handle big data efficiently, thanks to multithreading and indexing, enhances its utility. 
Researchers can effortlessly initiate new projects from numerical data or delve into existing MOG 
projects, which retain exploration history and can be saved and shared. The paper demonstrates 
MOG's prowess through case studies using curated datasets from human cancer RNA-Seq and 
Arabidopsis thaliana, showcasing its potential in identifying potential biomarkers and enabling 
substantial insights from diverse omics datasets. 

In the work of Buja et al. (2009), the article presents an innovative approach to enhance the 
effectiveness of exploratory data analysis (EDA) and model diagnostics through the integration of 
statistical inference. This framework proposes a shift towards incorporating an inferential protocol 
akin to confirmatory statistical testing, bridging the gap between visual analysis and traditional 
statistical hypothesis testing. In this paradigm, visual plots serve as the analog of test statistics, while 
human cognitive assessment assumes the role of statistical tests. The process involves measuring the 
statistical significance of "discoveries" made through EDA or model diagnostics by comparing the 
real dataset's plot with plots generated from simulated datasets. This comparison facilitates the 
assessment of the real data's uniqueness or structure against simulated data's randomness. The article 
introduces two protocols: one inspired by the "lineup" procedure utilized in legal contexts, and 
another inspired by the "Rorschach" inkblot test used in psychology. The former protocol, 
reminiscent of a police lineup, aids in determining whether visual observations in the real data stand 
out from random variability. The latter, inspired by psychological acclimatization, aids in preparing 
analysts to interpret variability before encountering the real data. These protocols have implications 
for exploratory data analysis, where reference datasets are simulated with a null assumption of no 
underlying structure, as well as for model diagnostics, where reference datasets are simulated based 
on the model under consideration. The proposed approach promises to enhance the rigor of 
exploratory data analysis and model diagnostics, potentially improving statistical thinking and 
practices in data analysis workflows and educational contexts. 

3. Results and Discussion 

The translational research approach of this study adopts a 5-phase conceptual framework to 
achieve its aim. The phases are discussed in this section.  

3.1 Data Acquisition and Preprocessing  

The first two stages entails the data acquisition and preprocessing phases where data is 
acquired from public repository and preprocessed prior to the data science-based subsequent 
phases. The dataset employed in this study originates from a proof-of-concept investigation 
conducted by Golub et al. in 1999 (Crawford, 2017). The study demonstrated the potential 
of classifying new cancer cases through gene expression profiling using DNA microarray 
technology. This method introduced a broad strategy for identifying novel cancer categories 



38 International Journal of Data Science ISSN 2722-2039 
 Vol. 5, No. 1, June 2024, pp. 33-49 

 

 

Temitope Elizabeth Ogunbiyi et.al (Improving Acute Leukemia Classification through Recursive Feature Elimination …) 

and accurately categorizing tumors into established classes. The dataset was specifically 
employed for the classification of patients afflicted with acute myeloid leukemia (AML) and 
acute lymphoblastic leukemia (ALL). As at the time of data acquisition, the dataset had 
135548 views, 15573 downloads, and a 0.11 download per view ratio. This speaks to the 
continuous employment of the dataset for analysis in the data science, biological and health 
science studies. The dataset is made up of 7130 gene descriptions with 62 data instances.  
For the purpose of this study, the dataset was preprocessed in order to make it compatible 
with data science programming tools. The major preprocessing task implemented was the 
transposition of the data to a compatible python data frame format.  

3.2 Feature Selection  

For this gene expression study, one of the most suitable feature selection algorithm in data 
science, Recursive Feature Elimination (RFE) is employed and implemented using python 
programming. RFE is a widely used technique that recursively eliminates the least 
significant features from a dataset while building a predictive model (Kilincer, Ertam, 
Sengur, R. S., & Acharya, 2023). Given the complexity of the gene expression data and the 
potential presence of noisy or irrelevant features, RFE is effective in identifying the most 
informative genes for distinguishing between different conditions or outcomes. In practical 
terms, analyzing the entire 7130 gene descriptions as contained in the dataset would result 
into a high computational overhead, which might not return a reliable outcome owing to 
redundancies, which feature selection algorithms are trained to eliminate. Hence one of the 
prominent aim of this study which focuses on implementing a feature selection methodology 
to identify the most significant feature attributes out of the entire 7130. Therefore, when 
investigating the correlation between gene expression levels and their cancer status in this 
study, RFE helps to identify a subset of genes that contribute most significantly to the 
observed correlations. The algorithm iteratively removes the least important genes based on 
their relevance to the correlations, refining the set of features to a more meaningful subset. 
By doing so, RFE enhances the interpretability of the results and potentially reveal key genes 
associated with the attributes of interest. The RFE algorithm is presented below: 

ALGORITHM 1: Recursive Feature Elimination (RFE) Algorithm  

Input: 

    Dataset (X, y) # Features (gene expression levels) and target (ALL or AML) 

    n_features_to_select # Desired number of features to retain 

    ML_Algorithm # Chosen machine learning algorithm 

Output: 

    Selected_Features        # List of selected features 

START: 

1. Initialize: 
2. All_Features = List of all available features 
3. Selected_Features = Empty List 
4. Current_Features = All_Features 
5. while len(Selected_Features) < n_features_to_select: 
6. Best_Feature = None 
7. Best_Score = -Infinity 
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8. for feature in Current_Features: 
9. Features_to_Use = Selected_Features + [feature] 
10. Train_Model(ML_Algorithm, X[Features_to_Use], y) 
11. Score = Evaluate_Model_Performance(ML_Algorithm, X[Features_to_Use], y) 
12. if Score > Best_Score: 

a. Best_Score = Score 
b. Best_Feature = feature 

13. Selected_Features.append(Best_Feature) 
14. Current_Features.remove(Best_Feature) 
15. Return Selected_Features 

Variables: 

i. Dataset (X, y): The dataset containing gene expression levels (features) and the target 
variable. 

ii. n_features_to_select: The desired number of features to retain. 
iii. ML_Algorithm: The chosen machine learning algorithm for evaluation. 
iv. Remaining_Features: List of features that have not been selected yet. 
v. Selected_Features: List to store the selected features. 

vi. Best_Feature: The feature with the highest score in each iteration. 
vii. Best_Score: The highest score achieved with the current set of features. 

viii. Features_to_Use: The set of features used for training the model in each iteration. 
ix. Train_Model(): Function to train the machine learning algorithm. 
x. Evaluate_Model_Performance(): Function to evaluate the model's performance. 

This pseudocode outlines the step-by-step procedure of the RFE algorithm. It starts with all 
available features and iteratively selects the best feature to add to the selected features list, 
while considering the performance improvement achieved by each feature. The algorithm 
terminates when the desired number of features is achieved. 

3.3 Exploratory Data Analysis  

Immediately after the feature selection phase is the exploratory analysis of the returned 
significant data features by RFE. It is a data mining phase that obtains actionable insights 
from data, towards inferring informed decision. EDA would reveal an in-depth analysis of 
the data which would aid better understanding of the gene attributes as they contribute to the 
positive status of the myeloid leukemia or the acute lymphoblastic leukemia cancer 
conditions. EDA has proven to be an indispensable technique needed to be implemented 
prior to any machine learning-based predictive analysis (Olaleye, et al., 2023). The 
techniques involved include: 

a. Summary Statistics  

Summary Statistics help to gain insights into the central tendency and variability of the gene 
observational attributes. The mean, median, and standard deviation are computed for the 
gene expressions towards determining a patient status as either of acute myeloid leukemia 
or acute lymphoblastic leukemia. It reveals the average measurements for each of the 
returned significant attributes. These experimental result will provide a quantitative 
understanding of the gene expressions and highlight any variations among their 
interrelatedness towards determining the two cancer acute stages. The mathematical 
computations are presented thus: 

mean (x)  =  ∑ �/
                         (1) 
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where x is the numerical values for each of the gene expressions and n is the total number of 
instances; 

�����
 =  {���
� }th                          (2) 

where 
 is the number of instances; 

� =  �∑ (���)�
���                           (3) 

where: 

� = gene value in the data distribution for each expression  

� = the mean 


 = total number of instances   

b. Maximum and Minimum Expression Values 

The maximum and minimum expression values for each of the measurements are identified to 
determine the maximum and minimum expressions. By analyzing the extreme values, patterns in 
gene expressions during extreme and minimal situations can be computed. This information is crucial 
for understanding the attitudinal trend of the genes as it relates to the two cancer stages. 

c. Interquartile Range (IQR) 

The interquartile range (IQR) is calculated to assess the spread and variability of the gene expressions 
in determining the acute stages. The IQR is a good measure of dispersion that represents the series 
of data points between the 25th and 75th percentiles of a data (Moustafa, et al., 2018). The IQR is 
computed as Q3 - Q1, where Q1 is the lower quartile and Q3 is the upper quartile. The calculation 
provide perceptions into the spread of the gene expressions and helps discover likelihood of outliers 
or unusual gene behavior. 

 1 = {���
" }#$                          (4) 

which specify the most centered gene expression value in the 1st half of the dataset; 

 3 = {3 ���
" }th                          (5) 

is the most central expression value in the 2nd half of the dataset  

 2 =  3 −  1                         (6) 

d. Correlation Analysis 

Correlation analysis is computed to understand the relationships and dependencies between gene 
expressions with respect to the two cancer conditions. The correlation matrix will reveal the pairwise 
relationships between the gene expressions and their relationship with the cancer statuses. The 
correlation coefficient is between -1 to 1, with values closer to -1 implying a strong negative 
relationship, values closer to 1 indicating a strong positive relationship, and values close to 0 
suggesting no significant relationship. With this analysis, interdependencies among the gene 
expressions is uncovered, which can inform their interrelatedness with the ALL or AML. For the 
purpose of this study, the correlation coefficient will be communicated in a heat map, which will also 
help to uncover the possibility of multicollinearity within the returned most significant data features. 
By dividing the covariance by the sum of the standard deviations of any two gene attributes, the 
correlation coefficient is calculated as: 
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()**�+�,�)
 = - = (./(�,1)
2�23                           (7) 

where � and 3 are two gene attributes under analysis.  

3.4 Multilayer Perceptron (MLP) Prediction of Cancer Status  

Upon the success of the EDA, which has provided actionable insights into the interrelatedness and 
the spread of data points in the returned most significant gene attributes, it is important to discover 
the predictive abilities of the predictive gene expression variables in detecting the cancer status as 
either ALL or AML. The deep learner MLP is employed for the purpose. MLP is a type of artificial 
neural network that consists of multiple layers of interconnected nodes. It typically comprises an 
input layer, one or more hidden layers, and an output layer. Each node in the network is connected 
to nodes in adjacent layers through weighted connections. The MLP employs nonlinear activation 
functions to introduce nonlinearity into the model, allowing it to capture complex patterns and 
relationships within the data. During training, the network adjusts the weights of these connections 
using various optimization algorithms, such as gradient descent, to minimize the difference between 
predicted and actual outputs. MLPs are widely used for various tasks, including classification, 
regression, and pattern recognition, due to their ability to learn from data and model intricate 
relationships. Each algorithm in the hierarchy of deep learning applies a nonlinear transformation to 
input data and acquires the ability to establish a statistical model that represents its output (Suganthi 
et al., 2022). This process iterates until a desirable level of predictive accuracy is attained. In this 
study, MLP categorized as a type of feedforward artificial neural network (ANN), is used. 
Comprising at least three layers of nodes—namely the input layer, hidden layer(s), and output 
layer—the MLP deploys a nonlinear activation function for each neural node. The architecture of the 
MLP is visualized in Figure 1. 

 

Figure 1. Structure of the MLP (Potghan, et al., 2018) 

The perceptron algorithm adapts the connection weights immediately after processing each 
individual data point, relying on the discrepancy between the perceptron's generated output and the 
intended outcome. The linear perceptron, an abridged variant of the least mean squares algorithm, 
characterizes this process. The error of an output node 'j' for the 'n'th data point is articulated as ej(n) 
= dj(n) - yj(n), wherein 'd' signifies the target value and 'y' denotes the output produced by the 
perceptron. Subsequently, the node's weights undergo adjustment to minimize the aggregate output 
error. This is achieved by reducing the corrections applied to the weights, guaranteeing that the 
perceptron converges towards the sought-after output. The calculation of these corrections is as 
follows: 
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∑(
) =  4
�  ∑ ��567 (
)                          (8) 

difference in each weight is calculated using gradient descent like in the following: 

⊿9:�(
) =  −ƞ < ð>(�)
ð?5(�)@ 1�(
)                          (9) 

1� indicate the output of the previous neuron, while the learning rate is indicated by ƞ, and ensures 
that the weights converge to a stable response without oscillations. The computed derivative is 
significantly dependent on the generated local field A:. 

4. Result and Discussion 

This section discusses the experimental result of the study.  

The RFE algorithm technique is implemented for feature selection purpose during the course of the 
MLP-based machine learning phase. The RFE process involves iteratively removing the least 
important features and evaluating the performance of the MLP after each elimination. As a result, 
the algorithm keeps track of the selected features. Once the RFE process is complete, the list of 
selected features are obtained directly from the RFE object. The selected features are those that were 
retained after the elimination process, and are presented in Table 1. In all, 20 most significant 
attributes out of the total 7130 are utilized by the MLP and are used for the predictive modelling of 
the study. The IQR is computed for all the twenty returned features and the experimental result is 
presented in Table 2. The provided table offers a comprehensive breakdown of distinct attributes 
representing gene expression levels within the context of this study. These attributes reflect essential 
molecular features that are crucial for understanding the intricate molecular landscape of the cancer 
samples under investigation, as determined by the MLP. For example, the gene attribute AFFX-
BioB-5_at displays a range of expression levels from -21 to 535 across the samples, revealing a 
notable span that encompasses both negative and positive values. Similarly, AFFX-BioB-M_at 
presents values from -14 to 487.75, indicating a diverse spectrum of expression patterns within the 
dataset. Interestingly, attributes such as AFFX-BioC-3_at and AFFX-BioDn-5_at show a significant 
positive shift in their distribution, evident by the 25th percentile values being greater than zero. This 
suggests that these genes may be unregulated or have a baseline level of expression in the studied 
cancer samples. Attributes AFFX-CreX-5_at and AFFX-BioB-5_st exhibit relatively lower values 
for the 25th percentile, suggesting the presence of negative or lower expression levels. On the other 
hand, the median and 75th percentile values in these attributes indicate a more extensive range of 
expression, indicating potential biological significance.  For AFFX-HSAC07/X00351_3_st, the 
range between the 25th and 75th percentiles spans from -10 to 469, indicating a diverse distribution 
that encompasses both negative and positive values. This pattern suggests that the gene associated 
with this attribute exhibits a wide range of expression across the samples, potentially implying its 
relevance in characterizing distinct molecular profiles. Similar trends are observed for the other 
attributes, such as AFFX-HUMGAPDH/M33197_5_st where expression levels range from -26.5 to 
296, indicating a notable variability in gene expression. Attribute GB DEF = GABAa receptor alpha-
3 subunit and Osteomodulin demonstrate differences in their distributions. The former has a 
distribution spanning from -15 to 280, while the latter ranges from -21 to 578. These wider ranges 
suggest higher variation in expression levels for these particular genes across the samples. In contrast, 
genes like mRNA and Semaphorin E exhibit more concentrated distributions, with values ranging 
from -51 to 683 and -20 to 474, respectively. The variations in gene expression levels observed across 
different attributes could indicate potential roles of these genes in cancer biology. Genes with wider 
distribution ranges might have more pronounced effects on the cancer phenotype, potentially serving 
as biomarkers or therapeutic targets. On the other hand, genes with narrower ranges might play more 
specific roles in certain cellular processes. These insights underscore the importance of exploring the 
expression patterns of these genes in relation to cancer subtypes, progression, and treatment 
responses. 
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Table 1. The most significant gene expression attributes returned by the RFE 

S/N Gene attributes 

1. AFFX-BioB-5_at (endogenous control) 
2. AFFX-BioB-M_at (endogenous control) 
3. AFFX-BioB-3_at (endogenous control) 
4. AFFX-BioC-5_at (endogenous control) 
5. AFFX-BioC-3_at (endogenous control) 
6. AFFX-BioDn-5_at (endogenous control) 
7. AFFX-BioDn-3_at (endogenous control) 
8. AFFX-CreX-5_at (endogenous control) 
9. AFFX-CreX-3_at (endogenous control) 
10. AFFX-BioB-5_st (endogenous control) 
11. AFFX-HSAC07/X00351_3_st (endogenous control) 
12. AFFX-HUMGAPDH/M33197_5_st (endogenous control) 
13. AFFX-HUMGAPDH/M33197_M_st (endogenous control) 
14. AFFX-HUMGAPDH/M33197_3_st (endogenous control) 
15. AFFX-HSAC07/X00351_5_st (endogenous control) 
16. AFFX-HSAC07/X00351_M_st (endogenous control) 
17. GB DEF = GABAa receptor alpha-3 subunit 
18. Osteomodulin 
19. mRNA 
20. Semaphorin E 

Table 2. Interquartile range of the most significant gene attributes 

Attribute Q1 

(25%) 

Q2 (50%) Q3 

(75%) 

AFFX-BioB-5_at (endogenous control) -21 159 535 
AFFX-BioB-M_at (endogenous control) -14 130 487.75 
AFFX-BioB-3_at (endogenous control) -31 177 610 
AFFX-BioC-5_at (endogenous control) -33 139 496.75 
AFFX-BioC-3_at (endogenous control) 8 145.5 470.75 
AFFX-BioDn-5_at (endogenous control) -26 106 401 
AFFX-BioDn-3_at (endogenous control) -33 134 497 
AFFX-CreX-5_at (endogenous control) -57.5 140 527 
AFFX-CreX-3_at (endogenous control) -14 166 609 
AFFX-BioB-5_st (endogenous control) -15 102.5 386 
AFFX-HSAC07/X00351_3_st (endogenous control) -10 151 469 
AFFX-HUMGAPDH/M33197_5_st (endogenous control) -26.5 82 296 
AFFX-HUMGAPDH/M33197_M_st (endogenous control) -49 129 435 
AFFX-HUMGAPDH/M33197_3_st (endogenous control) -19 98 321 
AFFX-HSAC07/X00351_5_st (endogenous control) -36 117 422 
AFFX-HSAC07/X00351_M_st (endogenous control) -31 99 366 
GB DEF = GABAa receptor alpha-3 subunit -15 73 280 
Osteomodulin -21 162 578 
mRNA -51 195 683 
Semaphorin E -20 136 474 
 

For the measures of dispersion, Table 3 and Table 4 returns the mean, standard deviation, minimum 
and the maximum gene description values of the attributes. The mean gene expression values 
highlight the average expression levels across the different genes. We can observe variations in mean 
expression levels among the genes, indicating potential differences in their biological roles or 
responses to experimental conditions. For instance, the gene "AFFX-HSAC07/X00351_3_st" 
demonstrates a mean expression of 668.61, whereas "AFFX-HUMGAPDH/M33197_5_st" has a 
mean expression of 497.13. The standard deviations provide insights into the extent of variability 
within each gene's expression levels. The large standard deviations suggest considerable differences 
in gene expression across conditions for each gene. For instance, the gene "AFFX-
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HSAC07/X00351_M_st" exhibits a standard deviation of 2360.24, indicating substantial variability 
in its expression levels. The minimum and maximum values reveal the range of expression values 
for each gene. Notably, some genes exhibit substantial ranges between their minimum and maximum 
values, indicating dynamic changes in expression under different conditions. For instance, the gene 
"AFFX-HUMGAPDH/M33197_M_st" shows a minimum value of -16131 and a maximum value of 
59647. The gene "AFFX-BioB-3_at" has a mean expression of 698.21, whereas "AFFX-BioDn-5_at" 
has a mean expression of 564.72. The gene "AFFX-CreX-3_at" (in Table 4) has a standard deviation 
of 2579.99, indicating notable variations in its expression levels. As observed from the Table xxx, 
some genes exhibit considerable differences between their minimum and maximum values, 
indicating diverse expression behaviors. For instance, the gene "AFFX-BioB-M_at" has a minimum 
value of -17930 and a maximum value of 29288. These statistical measures collectively offer a 
preliminary understanding of the characteristics of gene expression patterns. The high variability 
observed could be due to various factors such as experimental noise, regulatory mechanisms, or 
responses to external stimuli. 

Table 3. Summary statistics for measures of dispersion A 
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Table 4. Summary statistics for measures of dispersion B 

Gene AFFX-

BioB-

5_at 

AFFX-

BioB-

M_at 

AFFX-

BioB-

3_at 

AFFX-

BioC-

5_at 

AFFX-

BioC-

3_at 

AFFX-

BioDn-

5_at 

AFFX-

BioDn-

3_at 

AFFX-

CreX-

5_at 

AFFX-

CreX-

3_at 

Mean 641.28 690.15 698.21 600.90 679.44 564.72 584.36 571.28 789.60 
Standard 

Deviation 

(std) 

2264.15 2468.66 2485.50 2339.89 2375.74 2494.44 2412.65 2378.62 2579.99 

Minimum 

(min) 

-19826 -17930 -27182 -23396 -10339 -21658 -24024 -27570 -12500 

Maximum 

(max) 

31086 29288 28056 31449 29543 38467 41911 40065 23602 

 

The correlation coefficient analysis is presented for the 20 feature attributes in Figure 2 and Figure 
3. It is discovered that AFFX-HUMGAPDH/M33197_5_st and AFFX-HUMGAPDH/M33197_M_st 
have a strong positive correlation of approximately 0.772. This suggests that these two variables tend 
to increase or decrease together. AFFX-HUMGAPDH/M33197_5_st and Osteomodulin have a 
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negative correlation of approximately -0.290. This indicates that as one variable increases, the other 
tends to decrease. AFFX-HSAC07/X00351_M_st and GB DEF = GABAa receptor alpha-3 subunit 
have a positive correlation of approximately 0.293. This indicates a positive relationship between 
these two variables. mRNA and Semaphorin E have a very weak positive correlation of approximately 
0.050, and suggests a very mild positive relationship between these variables. GB DEF = GABAa 

receptor alpha-3 subunit and Osteomodulin have a positive correlation of approximately 0.166 
suggesting a mild positive relationship between these variables. 

 

Figure 2. The heat plot A of correlation coefficient 

It is observed from Figure 3 that AFFX-HUMGAPDH/M33197_5_st vs variable has a strong positive 
correlation with AFFX-HUMGAPDH/M33197_M_st (0.772) and a moderate positive correlation 
with AFFX-HUMGAPDH/M33197_3_st (0.568). It has a weaker positive correlation with AFFX-

HSAC07/X00351_5_st (0.493) and a weak positive correlation with AFFX-HSAC07/X00351_M_st 
(0.321). It has a weak negative correlation with GB DEF = GABAa receptor alpha-3 subunit (-0.204) 
and with Osteomodulin (-0.290). AFFX-HUMGAPDH/M33197_M_st vs on the other hand has a 
strong positive correlation with AFFX-HUMGAPDH/M33197_5_st (0.772) and a moderate positive 
correlation with AFFX-HUMGAPDH/M33197_3_st (0.580). It has a weak positive correlation with 
AFFX-HSAC07/X00351_5_st (0.384) and AFFX-HSAC07/X00351_M_st (0.458). The gene has a 
weak negative correlation with GB DEF = GABAa receptor alpha-3 subunit (-0.241) and 
Osteomodulin (-0.344). It also has a very wseak negative correlation with Semaphorin E (-0.094). 
AFFX-HSAC07/X00351_M_st has a weak positive correlation with AFFX-
HUMGAPDH/M33197_5_st (0.321) and AFFX-HUMGAPDH/M33197_M_st (0.458). It has a weak 
positive correlation with AFFX-HUMGAPDH/M33197_3_st (0.365) and AFFX-

HSAC07/X00351_5_st (0.468). The gene has a moderate positive correlation with Semaphorin E 
(0.225) and a weak negative correlation with GB DEF = GABAa receptor alpha-3 subunit (0.293). 
Osteomodulin has a weak negative correlation with AFFX-HUMGAPDH/M33197_5_st (-0.290) and 
AFFX-HUMGAPDH/M33197_M_st (-0.344). It has a very weak negative correlation with AFFX-

HUMGAPDH/M33197_3_st (-0.043) and AFFX-HSAC07/X00351_5_st (-0.152). It has a moderate 
negative correlation with AFFX-HSAC07/X00351_M_st (-0.239) and a weak. 

These correlation coefficients provide insights into how each variable is related to others in the 
dataset. Strong positive correlations suggest that the variables tend to increase together, while strong 
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negative correlations suggest that one variable tends to increase as the other decreases. Weak 
correlations indicate a lesser degree of linear relationship between variables. Remember that 
correlation does not imply causation; it indicates a statistical relationship. 

 

Figure 3. The heat plot B of correlation coefficient 

The result obtained after training the Multilayer Perceptron using Recursive Feature Elimination, 
specifically approximating the ALL or AML classes, shows impressive performance metrics 
presented below in Figure 4: 

 

Figure 4. The performance metrics of the Multilayer Perceptron with RFE 

i. Precision (0.998263889): Precision measures how many of the predicted positive instances are 
actually positive. In this context, it means that out of all the instances predicted as either ALL 
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or AML, approximately 99.83% are correct predictions. This is crucial in medical diagnostics 
because it ensures that when the model predicts a disease (ALL or AML), it is highly likely to 
be accurate. 

ii. Accuracy (0.997916667): Accuracy represents the overall correctness of the model's 
predictions. An accuracy of approximately 99.79% indicates that the model correctly predicts 
the class (ALL or AML) for nearly all instances in the dataset. It's an excellent indicator of how 
well the model performs in distinguishing between the two classes. 

iii. F1-Score (0.998958333): The F1-Score is the harmonic mean of precision and recall. It provides 
a balance between precision and recall and is especially useful when dealing with imbalanced 
datasets or when both false positives and false negatives need to be minimized. With an F1-
Score of approximately 99.90%, this model strikes an excellent balance between precision and 
recall. 

iv. Recall (0.997916667): Recall, also known as sensitivity or true positive rate, measures how 
many of the actual positive instances the model correctly predicted. With a recall of 
approximately 99.79%, the model does an exceptional job of capturing nearly all instances of 
both ALL and AML cases. 

These performance metrics collectively indicate that the MLP trained with RFE has achieved 
remarkable results in approximating the ALL or AML classes in gene expression data. Such high 
precision and recall values suggest that the model is both highly accurate and effective at identifying 
patients with ALL and AML based on gene expression patterns. 

The most informative genes to the MLP model had earlier been presented in Table 1. It can be 
inferred that the 20 features selected by RFE played a crucial role in achieving the impressive model 
performance. These attributes represent specific gene expressions that are highly indicative of either 
ALL or AML, providing valuable insights into the molecular signatures associated with these 
diseases. These attributes play a significant role in the model's ability to distinguish between the 
classes of interest, namely Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia 
(AML). The genes' expression levels in these attributes exhibit distinctive patterns between the two 
classes, and the model has learned to leverage these patterns for accurate classification. The inclusion 
of these attributes in the model indicates that they are crucial in identifying the molecular signatures 
associated with ALL and AML. This information provides insights into the biological mechanisms 
underlying these diseases, potentially leading to better diagnostics and targeted treatment approaches. 
It's worth noting that the model's success in accurately classifying instances is a result of the 
collective contribution of these attributes, emphasizing their importance in gene expression 
predictive analytics studies for medical applications. 

5. Conclusion and Recommendations 

In this study, we aimed to enhance the classification of acute leukemia subtypes, namely Acute 
Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML), using gene expression data 
analysis. We employed a systematic approach combining Recursive Feature Elimination (RFE) as a 
feature selection technique and Multilayer Perceptron (MLP) as the predictive modeling framework. 
Our research focused on identifying the most influential genes for accurate subtype classification. 
Through rigorous experimentation, we achieved highly promising results. The combined RFE-MLP 
approach yielded exceptional precision, accuracy, F1-Score, and recall rates of approximately 99%, 
signifying its effectiveness in leukemia subtype classification. Importantly, our study identified 
specific genes, including AFFX-BioB-5_at, AFFX-BioB-M_at, and GB DEF = GABAa receptor 
alpha-3 subunit, as some of the 20 key contributors to the model's predictive power. These genes 
may serve as potential biomarkers for leukemia diagnosis, offering valuable insights for future 
research and clinical applications. 
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Recommendations 

Further Validation: To strengthen the clinical relevance of our findings, it is recommended to validate 
the identified biomarker genes in independent datasets and conduct experimental studies to confirm 
their utility in leukemia diagnosis. 

Integration with Clinical Data: Integrating gene expression data with clinical variables such as patient 
age, gender, and treatment history can enhance the predictive power of the model. Future studies 
should explore the integration of multi-omics data for a more comprehensive analysis. 

Expanded Application: Extend the RFE-MLP approach to other cancer types and diseases for broader 
applications in precision medicine and healthcare. 
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