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1. Introduction  

Type 2 Diabetes (T2D) remains a leading cause of morbidity and mortality in the United States, 
particularly affecting historically underserved communities. The prevalence of T2D is intricately 

linked with various Social Determinants of Health (SDOH), which include the conditions under 

which people are born, grow, live, work, and age. Leveraging a decade of data from the Diabetes 
Atlas, this study expands upon traditional factors such as food insecurity to incorporate a broader 

spectrum of SDOH. The work of Haire-Josh and Hill-Briggs [1] highlights how inequities in living 

and working conditions significantly impact the biological and behavioral outcomes associated with 

diabetes prevention and control, substantiating our focus on identifying and analyzing the most 

influential SDOH factors visually at a more granular level. 

Existing visualizations lack granularity, not capturing the nuanced interplay between T2D prevalence 

and SDOH factors at the state and county levels from a machine learning perspective. Previous works 

[2] have extracted spatial effects of SHAP values, however this framework does not present a solution 
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 SHAP values have been a common approach used to understand machine 
learn- ing model predictions by averaging the marginal contributions of 
each feature across every possible permutation of the feature set. Our 
research provides a localized view of SHAP values contributing to Type 
2 Diabetes (T2D) prevalence in the United States from 2012 - 2021 
covering each year independently. Instead of visualizing SHAP feature 
importance across an entire geographical dataset using a beeswarm plot, 
our approach is more granular. We visualize individual SHAP values of 
Social Determinants of Health (SDOH) features by county on a 
Choropleth map. Additionally, we found that replacing geographic 
identifiers such as zipcode with precise latitude and longitude coordinates 
before applying KNN imputation reduced the MSE by 10%. Our 
visualization reveals how specific factors influence T2D prevalence at the 
county level using a non-linear machine learning model. By re-appending 
the initially preserved geographic identifiers for each record by index, we 
traced the contribution of each SHAP value back to its locality. Our 
approach opens up a new geographical vantage point of the mecha- nisms 
of model predictions, thereby identifying localized key factors 
influencing Type 2 Diabetes (T2D). This study extends the possibilities 
for tailored interven- tions and public health policies showing how some 
factors have varying predictive impact on an outcome at the geographic 
level. 
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to the issue of missing values within a county-level and longitudinal survey-based dataset [3]. SHAP 

value aggregation of machine learning models allow for compiling feature impacts in the form of a 

value for each feature in the model. By training on the social determinants of health data after a 
notably improved imputation method within the United States with diabetes prevalence being the 

dependent variable, the focus is on understanding how certain determinants or features have higher 

or lower impacts to the predicted model output at county level as opposed to overall in the US. 

This method of visualization can be compared with real world data or literature to assess its efficacy 

for other future modalities in the field of health or other domains. Here the use of machine learning 
is not only used to generalize to unseen data, but to mainly understand how they make predictions 

for the purpose of insights and analytics. This research provides an interactive map that overlays the 

most impactful SDOH factors contributing to T2D prevalence in the model. For each county the 
ordering of top features is based on the highest mean absolute value. Empirical postulations about 

diabetic outcomes are not the focus of this paper especially given the data is not absolute; the concept 

of visualizing granular impacts however, with this or similar datasets are of importance. To see 
changes through out time there is one model for each year with SHAP values and geographic 

identifiers preserved for each year by index for mapping. 

We utilize KNN imputation to enhance visualization by incorporating latitude and longitude to the 

compiled dataset, filling data gaps for certain counties and years of various features. The Euclidean 

distance during KNN imputation [4] captures the smallest spatial distance of similar data points for 
each missing feature within a data point to patch missing gaps. In basic terms, a row within the dataset 

can be referred to as a data point. Our approach adds in the latitude and longitude as continuous 

features to incorporate the uniqueness of each data point based on locality before KNN imputation. 
Filling these gaps before modeling provide a fuller dataset despite the fact that certain counties may 

not have certain SDOH factors reported in a specific year. 

This framework can provide policymakers, public health professionals, and community 

organizations with a visual understanding of T2D prevalence and its determinants from a machine 

learning perspective. By helping targeted interventions and resource allocation at the county and state 
levels, our research can provide other ways of applying machine learning to reduce health disparities 

related to T2D or other outcomes. The results of the visual can be cross-validated with real world 

data [5] to see if the feature impacts towards the outcome make sense beyond performance metrics 
like mean-squared-error and r-squared [6]. Model feature impacts can be used for targeted 

interventions to improve T2D outcomes at the geographic and temporal level (year by year). 

 
Figure 1. Diabetes prevalence in the United States from 2012-2021 (n = # of counties/records) 

 

 



66 International Journal of Data Science ISSN 2722-2039 

 Vol. 5, No. 2, December 2024, pp. 64-74 

 

 

 Youssef Sultan et.al (Visualizing Type 2 Diabetes Prevalence: Localizing Model Feature Impacts) 

2. Materials and Methods 

2.1 Data Collection 

The first step in finding the most impactful SDOH factors involves comprehensive data collection. 
This process included merging the NHANES dataset [7], which has food security and demographic 

data, with the CDC dataset [8] on Diabetes. These datasets are publicly available through government 

agencies and provide multi-year information at the county level. Due to the complexity of importing 

all indicators simultaneously, data was collected for each indicator separately from 2012 to 2021. 

Diabetes prevalence in the United States by year can be found in Figure 1. A similar plot for obesity 

prevalence which is used as an independent variable can be viewed in Appendix C. Each indicator 

dataset was saved as a separate file for each year. Subsequently, the datasets for each indicator and 
year were joined on county, state and zip to create a dataset stacked per year with all of the features. 

This process enabled the consolidation of data for various indicators and years into a single dataset, 

thereby helping analysis. A free API [9] was also used to acquire latitude and longitude as a 

replacement for the county, state and zip for later imputation. 

2.2 Data Cleaning 

The merged dataset originally has 53 columns which can be found in Appendix A. Initially, the zip 
codes were standardized to five digits by padding shorter codes with leading zeros, enhancing 

consistency across the dataset. Subsequently, records lacking essential information, such as 

diagnosed diabetes and obesity percentages, were removed, as these are key variables for the analysis 
and do not contribute to the analysis of diabetes prevalence. Additionally, the dataset underwent type 

conversions, transforming the diabetes and obesity percentages from string to float, to facilitate 

numerical operations. We also review the distribution of missing data for each year within the dataset, 

helping to identify any trends or discrepancies in data availabil- ity over time. For each year the 
distribution of missingness was found to be similar. As shown in Figure 2 it can be seen that some 

features have more than half of their records missing, because of this we drop features missing above 

48% of their values for the purpose of not inducing additional bias into later imputation. 

Figure 2.  Distribution of missing values overall (all years) 

 

2.3        Data Imputation 

Within the compiled dataset, there are cases where certain counties or localities may not have data 
for a specific feature or determinant. KNN imputation was decided to be used over mean or median 

imputation based off of previous works [10] as it was shown to outperform other methods. To ensure 

the most accurate value is imputed within missing data in a data point in the context of locality, we 

replace zipcode, county and state with latitude and longitude. Now before the euclidean distance is 
calculated, this allows for distance search to account for the variance of the county specific magnitude 



ISSN 2722-2039 International Journal of Data Science 67 
Vol. 5, No. 2, December 2024, pp. 64-74 

 

Youssef Sultan et.al (Visualizing Type 2 Diabetes Prevalence: Localizing Model Feature Impacts ) 

and impute a more accurate value. This process ensures there is no data loss when modeling or 

visualizing instead of dropping the data points as a whole. Dropping records with nulls would bring 

the overall dataset record count from 31,000 records to 8,000 which would result in major data loss 
across various counties. 

Figure 3. Root mean-squared error of KNN imputation; zip code vs latitude and longitude. 

 

Incorporating the magnitude of the locality (latitude and longitude columns) in the dataset before 
KNN imputation showed to have lower error as shown in Figure 3. The imputed values when 

including zipcode as a feature before imputation has a higher error against the true values, even at 

different levels of k neighbors tested from k=1 to k=7. 

2.3.1       Conducting the Experiment 

During KNN imputation, we saw how the accuracy of missing value estimation signif- icantly 

benefits from the precise representation of geographical data. To demonstrate this, we show how to 

reproduce the comparisons: one using ZIP code as a continuous variable and another using latitude 
and longitude as continuous variables, which allow for understanding how these results were 

formulated. Consider a simplified example where we have a feature set from 1 to n with m records, 

with additional location variables: 

Data with ZIP Code: 

 

Data with Latitude and Longitude: 
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Experiment 1 KNN Imputation for different k values with zipcode Input: Initial data with features 

and zipcode without dependent variable  

1: Initialize list to store RMSE for each k 
2: for k = 1 to 7 do 

3: Remove all rows containing a null value in any column from data 

4: Drop unnecessary columns, retain only ZIP code and other continuous features 
5: Introduce random missingness using a binomial distribution (30%) 6: Store original 

values replaced with NaN in a list in ascending order 7: Apply MinMaxScaler to normalize data 

8: Use KNN imputer with parameter k to fill missing values 

9: Inverse scale data back to original scale 
10: Store imputed values in a list in ascending order 

11: Calculate RMSE between original values and imputed values 

12: Append RMSE for each k to initialized list 
13: end for 

 

Experiment 2 KNN Imputation for different k values with latitude and longitude Input: Initial data 

with features, latitude and longitude without dependent variable  

1: Initialize list to store RMSE for each k 

2: for k = 1 to 7 do 
3: Remove all rows containing a null value in any column from data 

4:  Drop unnecessary columns, retain only latitude and longitude and other continuous 

features 

5: Introduce random missingness using a binomial distribution (30%) 6: Store original 
values replaced with NaN in a list in ascending order 7: Apply MinMaxScaler to normalize data 

8: Use KNN imputer with parameter k to fill missing values 

9: Inverse scale data back to original scale 
10: Store imputed values in a list in ascending order 

11: Calculate RMSE between original values and imputed values 

12: Append RMSE for each k to initialized list 

13: end for 

 
After conducting both experiments on full data with true values and inducing the random 

missingness, for both methods the RMSE’s can be compared. The records removed to have full data 

are just to show results on a full dataset with true values; to assess the estimation error inducing 
random missingness. By understanding that KNN imputer performs better with latitude and 

longitude, in this case where k=1, we can conclude that using KNN imputer on our full dataset with 

latitude and longitude would be the most accurate over zip code. 

2.4      Feature Selection 

After imputation one Linear Regression model per year is fit to the data with diabetes prevalence as 

the target outcome. This is done to understand whether the data fits the assumptions of a linear model, 

to see if any potential inference from coefficients would be adequate for visualization before 
nonlinear models. It was found that for all years, the residuals vs fitted values were not randomly 

scattered and residuals were not normal. A correlation analysis was also conducted via a heatmap as 

shown in Figure 4. 

Comparisons of all correlations for each year showed similar correlations between features. Then a 
VIF calculation for all features for each year was conducted to analyze features with a VIF greater 

than 10. For those features with a high VIF having correlation with others ≥ |0.5| the feature with the 

lesser variance out of the pair is dropped and the next was kept. This left us with a reduced feature 

set of 33, not including the latitude and longitude as they would be dropped during model training. 
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Figure 4.  2012 Data: Features with correlation ≥ |0.5| 

3. Results and Discussion 

3.1      Finding The Optimal Model 

Multiple non-linear models were evaluated to achieve the best r-squared and lowest rmse predicting 
diabetes prevalence. The main goal here is not only to have the best performing model, but to 

fundamentally conceptualize how one can interpret SHAP values geographically. The exploratory 

data analysis (EDA) revealed that the data did not adhere to the required linear relationship between 

the factors and the response variable before. Consequently, alternative methods were employed. The 
data was split into 80% train and 20% test datasets. Grid search with cross validation was used to 

find optimal hyperparameters for different models. XGBoost was selected as the main model of 

interest to calculate SHAP values from; model metrics for each can be viewed in Table 1. For each 
year, each model was ran on training sets of that specific year since the visual will be visualizing 

impacts at the yearly level. This yields for a total of 50 runs, not accounting for cross-validation folds 

and hyper parameter tuning. 

 

Table 1. Model mean-squared error across different years 

Model 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

RandomForest 1.0771 0.8653 0.8779  0.9991  0.8919 1.4400 1.0453 1.0720 0.9687 0.9034 

GradientBoost  0.9445 0.8598 0.8096 1.0082  0.8512 1.3516  1.0166 1.0431 0.9390  0.8974 
SVR 2.6191 2.3357 2.0961 2.0453 2.2005 3.3289 2.5296 2.5070 2.3537 2.2493 

XGBoost 0.9454  0.8582 0.8001 1.0120 0.8620 1.3533  1.0070 1.0364 0.9323 0.9040 

 

The r-squared of the best model had a median of 0.7, indicating that the fea- tures potentially 

explained 70% of the variance represented in the outcome. Given the foundation of the data itself, 

we would not receive better results given that the distribution of diabetes prevalence is quite similar 

year over year, with outliers being actual collected values and less prominent. This can be seen in 
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Figure 5, where the other unknown 30% of variability the features could not explain could be those 

data points outside of the highest frequency of prevalence. 

 

Figure 5.  Distribution of diabetes prevalence percentages by year showing skewness > 0 

3.2      Localizing SHAP Values 

After finding the optimal model parameters, the model is trained on the full dataset and passed 
through the SHAP explainer to calculate SHAP values on the full seen data. The reason for this is 

because we want predictions for each record in the dataset, to then have a matrix of the same size as 

the dataset but with SHAP values for each feature. The idea here is to understand how the model 

creates predictions on the all of the data so it can be visualized. If we were to only predict on the test 
set, we would only be able to visualize the test set, which would not show impacts for all counties. 

Since we preserved the index of the original dataset with the county, zip and state, we can concatenate 

these columns back to the SHAP value dataset, to then plot the SHAP values by county. 

Figure 6. 2012: Obesity Percentage prevalence plotted without any modeling 

 

In Figure 6 we can view the raw values of the Obesity prevalence percentage before any modeling 

by county to view the overall density via a choropleth map. This is how the data is generally 
visualized on the CDC website. This allows us to compare to Figure 7; this shows the same feature 

however its SHAP value impacts towards diabetes prevalence by county. For each instance in each 

data point there is a SHAP value and this is plotted with the reattached geographical information 

known for that index position in the matrix. 
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Figure 7. 2012: Obesity Percentage prevalence impact on diabetes prevalence prediction 

 

In Figure 7 we can see that the Obesity percentage has a higher impact on the predicted model output 

in Alabama, with certain counties having a higher SHAP value (red) than others. This highlights 

counties where Obesity prevalence rates are predictors of higher diabetes prevalence as opposed to 
others. 

This allows us to understand the features that contribute to the model prediction at the geographic 

level; to understand whether a specific determinant has a higher contribution to diabetes prevalence 

in some counties rather than others. This approach allows to see the granular contributions, positive 
or negative towards the outcome. Positive SHAP values indicate that the feature positively impacts 

the outcome, while negative SHAP values indicate the opposite. This can be identified through the 

color scheme in the legend of the visual, this is the same color scheme which is used by the original 
SHAP beeswarm plot visualization. 

 

 
Figure 8.  2014 Data: Dallas County, Alabama Diabetes Prevalence 
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Figure 9.  2014 Data: Top features contributing to Diabetes Prevalence in Dallas County 

 

If we take a look at another example: Dallas County’s top features are based on the top absolute 

values, we can see in Figure 8 (color is based on diabetes prevalence in a legend not shown) the top 

five features contributing to the outcome. In Figure 9 the SHAP value for the minority percentage 

feature is 0.62 and second most important, this indicates that as the minority percentage increases, 

the diabetes prevalence increases in Dallas County, Alabama in 2014. These granular details are 
more nuanced than an overall holistic view of feature impact from the dataset. An example of the 

2014 data’s top feature impacts based on the default beeswarm plot can be viewed in Figure 10. 
 

 

Figure 10.  2014 Data: Beeswarm Plot of Top 5 Features contributing to Diabetes Prevalence in overall data 

 

There are clear differences in the top feature impacts between the overall beeswarm plot and the 

granular geographic views of the impacts. The beeswarm plot calculates the mean absolute value of 
the entire feature vector for each feature, while our visual provides the SHAP value for the feature 

in the specific row which is attributed to the selected county. Understanding the direct impacts at the 

data point/row level allows us to understand why the model is creating such predictions for those 

specific counties. It can allow us to understand if more research should be conducted around a 
specific county for tailored targeting. By retaining each training data point’s county, zip and state 

information we can be able to pinpoint the impact using these details as a label, localizing the SHAP 

impacts to assess the results more closely. 

4. Conclusion 

In this study we showed the difference between holistic and localized feature importance in a non-

linear machine learning model. In addition, we provided a more accurate way of imputing missing 
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values of certain determinants by adding their associated Latitude and Longitude for each record 

before KNN imputation. This method improved on the RMSE against the true values as opposed to 

using zip code. The impacts of social determinants of health on Type 2 Diabetes (T2D) prevalence 
at a localized county level were visually different than raw social determinant values plotted in the 

choropleth map. Mean absolute SHAP values from the overall dataset (year) were also different than 

county level SHAP values, indicating differing top contributors to diabetes prevalence by locality. 

Our visualization can provide a deeper understanding of the data since not all counties have the same 

SHAP values; some are more affected by other features. This could suggest how specific policies in 
T2D prevention cannot be ubiquitous. For instance, a national policy on Obesity might have the best 

chance at lowering T2D overall but could still not be effective in certain regions in the United States. 

These methods can be performed on state, zip code, city or county-level data. 

The interpretation of SHAP values does depend heavily on the model’s accuracy and the quality of 
the data used. Future research should focus on incorporating more comprehensive datasets that 

include additional variables potentially affecting T2D or other outcomes that may not relate to health. 

Results should be cross-referenced with real-world data, primary or secondary sources to make 

empirical claims or confirm certain hypotheses using these methods. 

A different vantage point of the underlying mechanisms influencing these predictions is established, 
which can allow for better targeted and effective public health strategies. By enhancing model 

accuracy and incorporating a broader range of determinants, we can understand and address the 

complex interplay of factors contributing to T2D and other health outcomes. 
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Appendix A 

1. Appendix A Columns in dataset before analysis 

 

Features in compiled dataset 

euclidean distance iso idx native hawaiian public transportation % farmers market rate 

reduced lunch % soda sales tax% iso idx american indian iso idx asian 

dentists rate per 100k dentists number physicians number physicians per 100k 

deficient in english % fast food proportion fast food number iso idx black 

multi unit structures % exercise access % group quarters % crowding % 

no healthy foods % food environment idx rent ≥ 50% income iso idx hispanic 

unemployed % no vehicle % commute 60 minutes % housing cost burden % 

mobile homes % single parent home % no health insurance % iso idx white 

vacant housing units below poverty % income vulnerability % minority % 

children in poverty % food insecurity % no hs diploma % 65 or older % 

17 or younger % disabled civilian % diabetes prevalence % obesity % 

physical inactivity % urban rural food insecurity rate # food insecure children

cost per meal zipcode state year 

 

Table A1 Features compiled from the Diabetes Atlas Data and the Food Insecurity Data. 

Features in red were not included in the model due to high VIF and multicollinearity. They 

are the part of the pair that has lower variance. 

 

2. Appendix B Obesity prevalence yearly 

 

 

Figure B1. Obesity prevalence in the United States from 2012-2021 

 


