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1. Introduction  

The Kalman filter, since its introduction by Rudolf E. Kálmán in 1960 [1], has revolutionized the 

field of state estimation and established itself as a cornerstone of modern control theory and signal 

processing. Originally developed for aerospace applications during the Apollo program [2], this 
recursive estimation algorithm has proven remarkably versatile, finding applications across diverse 

scientific and engineering domains. The filter's elegant mathematical formulation, combining 

statistical rigor with computational tractability, has made it particularly valuable in fields where real-

time state estimation from noisy measurements is crucial. 

The impact of Kalman filtering extends far beyond its aerospace origins, revolutionizing numerous 
scientific and engineering disciplines. In robotics and autonomous systems, Kalman filters serve as 

the backbone of simultaneous localization and mapping (SLAM) algorithms [3], enabling robots to 

navigate unknown environments while maintaining accurate position estimates. The automotive 
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 We present a comprehensive performance analysis of 1D linear Kalman 
filter implementations across three modern scientific computing 
environments: Python, Julia, and R. Using a position tracking problem 
with hypothetical noisy sonar measurements, we evaluated both 
numerical accuracy and computational efficiency. All implementations 
produced numerically identical results within machine precision 
(maximum differences of 1.2 � 10��� m for position estimates), 
demonstrating the filter's ability to reduce measurement noise by 73.1% 
while accurately estimating unmeasured velocity states. Performance 
benchmarking revealed significant efficiency differences, with Python 
achieving a median execution time of 1.87 seconds, compared to 4.38 
seconds for R and 34.82 seconds for Julia. Statistical analysis confirmed 
these differences were highly significant (Kruskal-Wallis H �1332.445, p � 0.001) with extremely large effect sizes (Cohen's d > 13 
for all comparisons). Memory profiling revealed significant differences 
in resource utilization, with Python maintaining the most efficient 
footprint (97.67 MB), followed by Julia (132.45 MB) and R (168.21 MB), 
all with minimal variation. The unexpected underperformance of Julia 
relative to Python contradicts theoretical expectations and highlights the 
importance of empirical benchmarking for scientific computing 
applications. Our results provide practical guidance for implementing 
Kalman filters in time-critical or resource-constrained applications.   
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industry has embraced these techniques for advanced driver assistance systems (ADAS) [4], where 

sensor fusion of radar, lidar, and camera data requires robust state estimation under real-time 

constraints. 

In biomedical engineering, Kalman filtering techniques have enabled significant advances in neural 
signal processing and brain-computer interfaces [5]. These applications range from decoding motor 

cortex signals for prosthetic control to filtering electroencephalogram (EEG) data for real-time brain 

state estimation. The medical imaging community has likewise adopted Kalman filtering for motion 

compensation in magnetic resonance imaging (MRI) and for tracking cardiac motion in ultrasound 

imaging [6]. 

The telecommunications sector employs Kalman filtering for channel estimation and signal tracking 

in wireless communications [7]. As 5G networks and beyond continue to evolve, these techniques 

become increasingly crucial for handling complex, time-varying channel conditions and maintaining 
reliable high-bandwidth connections. In financial mathematics, Kalman filters have found 

applications in algorithmic trading, asset price prediction, and risk assessment [8], where they help 

extract meaningful signals from noisy market data. 

The field of atmospheric and oceanic sciences represents another crucial domain where Kalman 

filtering techniques have become indispensable. These applications range from numerical weather 
prediction [9] to ocean state estimation [10] and climate modeling [11]. The ensemble Kalman filter 

(EnKF) [12], in particular, has enabled breakthrough advances in handling high-dimensional, 

nonlinear systems characteristic of geophysical fluid dynamics. Modern operational forecasting 
centers routinely employ these techniques to assimilate millions of satellites and in-situ observations 

into their prediction models [13]. 

Computer vision and augmented reality applications have also benefited significantly from Kalman 

filtering techniques. These algorithms play a crucial role in object tracking, camera pose estimation, 
and feature point tracking [14]. The gaming industry, in particular, has leveraged these methods for 

motion prediction and input smoothing in virtual reality systems, enhancing user experience while 

minimizing motion sickness. 

In industrial process control, Kalman filters are essential components of modern control systems, 

enabling precise monitoring and optimization of manufacturing processes [15]. Applications range 
from semiconductor fabrication, where nanometer-scale precision is required, to chemical process 

control, where complex reaction dynamics must be estimated and regulated in real-time. The 

emerging field of Industry 4.0 has further expanded these applications, incorporating sensor networks 

and real-time optimization for smart manufacturing systems. 

Despite its theoretical elegance and practical importance, implementing the Kalman filter efficiently 

remains a significant consideration, particularly in real-time applications. The algorithm's 

computational demands, while modest for low-dimensional systems, can become substantial when 

deployed in operational settings or when processing high-frequency sensor data. This computational 
aspect has become increasingly relevant with the proliferation of Internet of Things (IoT) devices 

and autonomous systems [16], where resource constraints and energy efficiency are critical concerns. 

The landscape of scientific computing has evolved significantly in recent years, with several high-

level programming environments emerging as popular choices for implementing numerical 
algorithms. Python, with its extensive scientific computing ecosystem (NumPy, SciPy), has become 

the de facto standard for many researchers [17]. R continues to maintain its stronghold in statistical 

computing [18], while Julia has gained traction for its promise of combining high-level 

expressiveness with compiled-language performance [19]. Each environment offers distinct 
advantages: Python excels in library ecosystem and readability, R provides robust statistical tools 

and data handling capabilities, and Julia offers a fresh approach to scientific computing with its 

multiple dispatch paradigm and native support for mathematical notation. 
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The choice of implementation environment can significantly impact both development efficiency 

and runtime performance. While previous studies have compared these environments for general 

numerical computing tasks [20] and specific applications like machine learning [21], a systematic 
comparison focused on state estimation algorithms, particularly the Kalman filter, has been lacking. 

Such a comparison is valuable not only for practical implementation decisions but also for 

understanding how different programming paradigms and computational approaches affect the 

performance of fundamental algorithms in signal processing and control theory. 

By focusing on a one-dimensional tracking problem, we establish a controlled benchmark that 
isolates the essential computational characteristics of the filter while maintaining practical relevance. 

This simplification is particularly relevant as the core computational patterns—matrix operations, 

prediction-correction cycles, and covariance updates—remain consistent across applications of 
varying dimensionality. Moreover, the principles and performance characteristics identified in this 

study scale predictably to higher-dimensional problems, making our findings broadly applicable. 

Our methodology emphasizes statistical rigor in performance evaluation, employing formal 

hypothesis testing and effect size analysis to quantify the significance of observed differences. This 
approach distinguishes our work from previous comparative studies and aligns with the increasing 

emphasis on reproducibility in computational science [22]. Furthermore, by conducting our analysis 

on modest hardware typical of development environments, we provide results directly relevant to the 

practical implementation decisions faced by researchers and developers. Through comprehensive 
evaluation of execution time, memory usage patterns, and numerical stability considerations, we 

offer insights valuable for both practitioners implementing state estimation systems and researchers 

developing new algorithmic variants. 

2. Methods 

2.1 Theoretical Background 

We began by considering the fundamental problem of tracking one-dimensional motion using noisy 

position measurements. The state estimation problem arose from the need to determine both position 

and velocity from position-only measurements. We defined the state vector at time � as: 

 x� �  ������. (1) 

 

For constant-velocity motion over small time intervals, we derived the state transition equation from 

Newton's equations of motion. Given a time step ∆�, the position update followed: 

 �� � ���� + ����∆� + 12 �∆�� . (2) 

 

Under the constant velocity assumption (� ≈ 0), and accounting for small perturbations through 

process noise, we obtained the linear state-space model: 

 ������ � �1 ∆�0 1 � ���������� + !� , (3) 

 

where !" ∼ $%&, '( represented the process noise. The process noise covariance Q was derived 

from the continuous-time white noise acceleration model through: 

 ' � ) *∆�+/3 ∆��/2∆��/2 ∆� -, (4) 
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where ) was the continuous-time noise intensity. As shown in Equation (3), the state transition matrix 

A captured the deterministic component of motion. 

The measurement process yielded noisy observations of position only: 

 .� � /1 001� + �� , (5) 

 

where �� ∼ $%0, 2( represented measurement noise.  

To derive the optimal state estimator, we employed the principle of conditional expectation. Given 

all measurements up to time �, denoted as 3� � 4.�, . . . , .�5, we sought: 

 16�|��� � 8/1�|3�0. (6) 

 

The linear Kalman filter provided this estimate recursively in two steps. For the prediction step, we 

applied the law of total expectation as follows: 

 

16�|��� � 8/1�|3���0 
                          � 8/91���+!�|3���0 

                                 � 98/:���|3���0 + 8/!�0 
          � 916���|���. 

(7) 

 

The associated prediction error covariance followed from: 

 
;�|��� � 8 �<1� − 16�|���><1� − 16�|���>⊺|3����               � 9;���|���9⊺ + '. (8) 

 

For the update step, we sought a linear update of the form: 

 16�|� � 16�|��� + @A<.� − B16�|���>. (9) 

 

The optimal Kalman gain @� minimized the trace of the posterior covariance matrix. Taking the 

derivative of ;�|� with respect to @� and setting it to zero yielded: 

 @� � ;�|���B⊺<B;�|���B⊺ + 2>��. (10) 

 

The posterior error covariance then became: 

 
;�|� � 8 �<1� − 16�|�><1� − 16�|�>⊺|3��           � %C − @�B(;�|���. (11) 

 

Equations (7), (8), (9), (10), and (11) formed the complete recursive estimation cycle. This estimator 
was optimal when the system model given by Equations (3) and (5) accurately represented the true 

system dynamics, and the noise processes !�  and �� were white and Gaussian with known 

covariances as specified in Equation (4). 
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2.2 Numerical Implementation 

The numerical implementation of the Linear Kalman Filter was developed and tested using the toy 
sonar altitude dataset from [23]. This dataset, provided in MATLAB® format as SonarAlt.mat, 

contained 1500 samples of noisy altitude measurements recorded at 50 Hz sampling frequency. The 

measurements exhibited typical characteristics of sonar sensor noise, including occasional outliers 
and measurement uncertainty that scaled with distance, making it an appropriate test case for 

evaluating filter performance. 

The numerical implementation focused on computational efficiency and numerical stability. We 

employed a modular object-oriented approach in Python, functional programming in R, and multiple 

dispatch in Julia to maintain code clarity while optimizing performance. Our implementation 
emphasized robust handling of the core filter operations while ensuring consistent results across all 

three platforms. 

The core algorithm implementation began with the initialization of filter parameters. The state 

transition matrix A and measurement matrix H were defined as: 

 9 � �1 ∆�0 1 � , B � /1 00, (12) 

 

where ∆� � 0.02 seconds was chosen based on the sonar sampling frequency. The process noise 

covariance was initialized with empirically determined values to reflect the system dynamics: 

 ' � �1 00 3�, (13) 

 

and measurement noise variance was set to 2 � 10, derived from the sensor's known 

characteristics. The initial state estimate and covariance were established to reflect our preliminary 

knowledge of the system: 

 1D � � 020� , ;D � 5C�. (14) 

 
To ensure numerical stability under finite-precision arithmetic, we implemented the Joseph form of 

the covariance update: 

 ;�|� � %C − @�B(;�|���%C − @�B(⊺ + @�2@�⊺ . (15) 

 
Matrix inversions in the Kalman gain computation were handled through Cholesky decomposition 

to maintain numerical stability throughout the recursive estimation process. We maintained state 

estimates as column vectors for optimal matrix operations, and intermediate results in covariance 

computations were explicitly symmetrized to prevent numerical drift. Memory pre-allocation was 
implemented for all major arrays to optimize performance, particularly important for the storage of 

position estimates, velocity estimates, and covariance matrices throughout the estimation timeline. 

The Python implementation leveraged NumPy's vectorized operations and optimized matrix 

computations via BLAS/LAPACK interfaces. The object-oriented design encapsulated the filter state 
and parameters, while SciPy's I/O functionality enabled seamless handling of MATLAB® format 

input data. Memory-efficient array views were utilized for state and covariance updates, minimizing 

unnecessary data copying during the recursive estimation process. 

In the R implementation, we adopted a functional programming paradigm with immutable data 

structures, leveraging R's native BLAS implementation for efficient matrix operations. The tidyverse 
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ecosystem provided robust data manipulation capabilities, while the R.matlab package facilitated 

direct processing of the sonar measurement data. The implementation maintained computational 

efficiency through careful memory management and vectorized operations. 

The Julia implementation exploited multiple dispatch for specialized matrix operations and native 
support for SIMD operations. Critical code paths benefited from Julia's static compilation, and direct 

memory management was employed in performance-sensitive sections. The implementation took 

advantage of Julia's native linear algebra capabilities for optimal handling of matrix operations in the 

filter updates. 

The software environment comprised specific versions of key packages across all three platforms. 
Python 3.10 utilized NumPy 1.24.0 for core numerical computations, SciPy 1.10.0 for scientific 

computing and I/O operations, and Pandas 2.0.0 for data manipulation. R 4.2.0 employed the 

tidyverse 2.0.0 ecosystem for data processing and R.matlab 3.7.0 for MATLAB® file compatibility. 
Julia 1.9.0 implementation relied on its built-in LinearAlgebra module for core matrix operations, 

along with the CSV and DataFrames packages for data handling, and the MAT package for 

MATLAB® format support. 

2.3        Performance Analysis 

To conduct a rigorous comparative analysis of the three implementations, we developed a 
comprehensive performance evaluation framework combining systematic benchmarking with robust 

statistical analysis. The experimental design followed a repeated-measures approach to ensure 

statistical validity of the comparisons. 

For each implementation, we conducted E warmup runs followed by F measurement runs, yielding 

sample space Ω � 4EH5HI�J  where E � 5 and F � 500. Two primary performance metrics were 

collected: execution time K: Ω → ℝ� and peak memory usage O: Ω → ℝ�. Let ℒ �4QR�ℎTF, 2, UVWX�5 denote the set of implementations. For each ℓ ∈ ℒ, we obtained sequences: 

 [Kℓ,H\HI�J
 and [Oℓ,H\HI�J . (16) 

 

Given the non-Gaussian nature of performance measurements, we employed non-parametric 

methods. The Kruskal-Wallis H-test examined null hypothesis ℋD that all implementations had 

identical performance distributions. For metric X (either T or M), the test statistic was: 

 ^ � 12_%_ + 1( ` 2ℓ�Fℓ − 3%_ + 1(,
ℓ∈ℒ

 (17) 

 

where _ � ∑ Fℓℓ∈ℒ  represents total observations, Fℓ denotes observations for implementation ℓ and 2ℓ is rank sum for implementation ℓ. Under ℋD, statistic ^ follows b� distribution with |ℒ| − 1 

degrees of freedom. 

For pairwise comparisons, we applied Dunn's test with Bonferroni correction. For implementations X, c ∈ ℒ, test statistic was: 

 
dH,e � 2fH − 2fe

g_%_ + 1(12 h 1FH + 1Fei
, 

(17) 

 

where 2fH and 2fe  denote mean ranks. Adjusted significance level �∗ was: 
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 �∗ � �Dk , k � l|ℒ|2 m, (18) 

 

where �D � 0.05 represents base significance level. 

To quantify practical significance, we computed Cohen's n effect size for each implementation pair. 

For X, c ∈ ℒ: 

 
nH,e � opH − ope

g%FH − 1(qH� + <Fe − 1>qe�FH + Fe − 2
, 

(19) 

 

where opH, qH� represent sample mean and variance for implementation X.  
All performance measurements were conducted on a Lenovo ThinkPad P52s (20LB0021US) mobile 

workstation equipped with an Intel i7-8550U processor. This 8th generation Intel processor features 

8 logical cores through hyper-threading, with a base frequency of 1.8 GHz and turbo boost capability 
up to 4.0 GHz. The system ran Fedora Linux 39 (Budgie) x86_64 with kernel version 6.11.9-

100.fc39.x86_64, providing a stable and consistent testing environment. This mobile workstation 

platform, while modest by current standards, proves particularly suitable for our comparative 

analysis. The quad-core processor with hyper-threading provides sufficient computational capacity 
for evaluating sequential algorithm implementations, while the mobile platform's thermal and power 

constraints help expose performance differences between implementations that might be masked on 

more powerful hardware. Running under GNU/Linux ensures minimal system overhead and 
consistent process scheduling, vital for reliable performance measurements. This hardware 

configuration provides an appropriate testbed for our purposes, as the 1D Kalman filter 

implementation's computational requirements align well with the system's capabilities, and the 
relative performance characteristics observed here would scale proportionally on more powerful 

systems. Our methodology for performance benchmarking follows similar approaches to those 

employed in previous studies [24], [25], [26], [27], [28], which conducted a comprehensive cross-

platform performance analysis using non-parametric statistical techniques to evaluate computational 

efficiency across different programming environments. 

The statistical analysis utilized specific Python packages: scikit-posthocs 0.7.0 for Dunn's test and 

custom implementations for effect size calculations using NumPy 1.24.0. Performance metrics were 

collected using psutil 5.9.0 for process monitoring, with execution time measured through monotonic 

clock readings and memory usage tracked via Resident Set Size (RSS) measurements. 

3. Results and Discussion 

3.1      Numerical Results of the Kalman Filter Implementation 

Figure 1 presents the primary outputs of the 1D linear Kalman filter implementation, showing both 

position and velocity estimates over a 30-second observation period. The Kalman filter effectively 

rejected measurement noise while preserving the underlying signal dynamics. The raw sonar 
measurements, displayed as red dots, exhibited considerable noise with a standard deviation of 3.24 

m around the true trajectory. In contrast, the filtered position estimate, shown as a black line, reduced 

this uncertainty to 0.87 m standard deviation, representing a 73.1% reduction in position uncertainty. 

This smoothing effect was particularly evident during the steady-state regions around 10-20 seconds, 
where position maintained approximately 90 m altitude with minimal fluctuation, and after 25 

seconds, where the estimate stabilized at 36.2 m with a variance of only 0.09 m². 



ISSN 2722-2039 International Journal of Data Science 105 
Vol. 5, No. 2, December 2024, pp. 98-111 

 

Siti N. Kaban et.al (Performance Analysis of 1D Linear Kalman Filter in Modern Scientific Computing Environments) 

 
Figure 1. Position and velocity estimates from the Kalman filter over a 30-second period. Raw sonar 

measurements (red dots) exhibit considerable noise, while the Kalman filter produces a smooth position 

estimate (black line). The velocity estimate (blue line, right axis) demonstrates the filter's capability to derive 

velocity information from position-only measurements. The trajectory shows distinct phases of movement: 

initial ascent (0-5s), oscillatory middle section (5-20s), and final descent and settling (20-30s). 

 

Figure 2 illustrates the temporal evolution of estimation uncertainty for both position and velocity 

states. The position variance, shown in the left panel, exhibited rapid initial convergence from its 
initialization value of 5.0 m² to approximately 2.93 m² within the first 0.86 seconds. This 41.4% 

reduction in uncertainty occurred over just 43 filter iterations, demonstrating efficient assimilation 

of measurement information. After this initial transient phase, the position variance stabilized, 

fluctuating within a narrow band of 2.93±0.02 m² throughout the remaining simulation period. This 
stability was maintained despite significant changes in the system state, confirming the filter's robust 

uncertainty propagation under varying dynamic conditions. 

 

 
Figure 2. Temporal evolution of state estimation uncertainties. Left panel: Position variance shows rapid initial 

convergence to approximately 2.93 m² within the first second, followed by stable behavior throughout the 

remainder of the simulation. Right panel: Velocity variance exhibits different convergence characteristics, 

reaching steady-state at approximately 95 (m/s)² within 2-3 seconds. Both metrics demonstrate the filter's 
numerical stability and proper uncertainty propagation. 

 

The velocity variance, depicted in the right panel, displayed notably different convergence 

characteristics. Starting from an initial value of 5.0 (m/s)², it increased rapidly to 94.7 (m/s)² within the 
first 2.14 seconds before stabilizing. This increasing uncertainty profile reflects the inherent challenge 

in estimating a derived quantity not directly measured. The steady-state velocity variance of 94.7±0.3 
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(m/s)² was maintained from t=2.14s until the end of the simulation at t=30s, spanning 1392 filter 

iterations. The higher steady-state uncertainty in velocity compared to position (94.7 (m/s)² vs. 2.93 

m²) quantifies the additional estimation challenge for derived state variables. The asymptotic behavior 
of both variance components aligns with theoretical expectations for a steady-state Kalman filter 

operating on a time-invariant system with constant process noise covariance r �  /1, 0;  0, 30 and 

measurement noise covariance 2 �  10. Figure 3 provides deeper insight into velocity estimation 

performance by comparing three different approaches to velocity determination. The measurement 
derivative approach, computed as finite differences of raw position measurements and displayed as red 

dots, demonstrated the fundamental challenge in velocity estimation through numerical differentiation 

of noisy data. This method produced physically implausible velocity values ranging from -746.8 m/s 
to +583.2 m/s, with a standard deviation of 172.46 m/s around the mean. The extreme outliers, 98 

measurements exceeding ±200 m/s, illustrate how differentiation amplifies measurement noise, 

rendering these velocity estimates unusable without substantial additional filtering. 

The position derivative method, which applies finite differencing to the filtered position estimates 

and is shown as a black line, demonstrated substantial improvement with velocities generally 
constrained within ±150 m/s. However, this approach still exhibited considerable noise 

amplification, with a standard deviation of 38.21 m/s and oscillations frequently exceeding ±50 m/s. 

The root mean square error (RMSE) compared to the Kalman velocity estimate was 37.9 m/s, 
highlighting that even after applying the Kalman filter to position data, numerical differentiation 

remains problematic for velocity determination. 

In contrast, the Kalman filter velocity estimate, displayed as a blue line, demonstrated superior 

performance with a standard deviation of only 7.84 m/s and velocities consistently within physically 

plausible ranges for the underlying sonar altitude system. The maximum absolute velocity was 23.7 
m/s, occurring during the steepest descent phase, and 95% of all velocity estimates fell within ±15.8 

m/s. The filter maintained physical consistency while effectively rejecting measurement noise, with 

velocity estimates exhibiting first-order continuity not present in the other methods. Statistical 
comparison revealed that the Kalman approach reduced velocity estimate variance by 95.4% 

compared to measurement derivatives and by 79.5% compared to position derivatives, quantifying 

the substantial advantage of model-based estimation for derived quantities. 

 
Figure 3. Comparison of velocity estimation approaches over a 30-second period. The measurement derivative 

(red dots) computed through finite differences of raw measurements exhibits extreme noise with values ranging 

from -800 to +600 m/s. The position derivative (black line) calculated from filtered positions shows improved 

but still noisy behavior. The Kalman estimate (blue line) provides robust velocity estimation, effectively 

suppressing noise while preserving the underlying motion profile. 
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Implementation consistency was verified across all three programming environments. The Python, 

Julia, and R implementations produced numerically identical filtering results within machine 

precision, with maximum differences in state estimates below 1.2 � 10��� m for position and 5.8 � 10��� m/s for velocity between any implementation pair. The covariance matrices likewise 

demonstrated consistency, with trace differences below 2.3 � 10��+ across implementations. This 

consistency validates the robustness of the Kalman filter algorithm and confirms that performance 
differences stem from implementation efficiency rather than numerical accuracy variations. 

3.2      Performance Analysis Across Implementation Languages 

A systematic performance comparison of the 1D linear Kalman filter implemented in Python, Julia, 

and R revealed substantial differences in computational efficiency and resource utilization. For each 
implementation, we conducted 500 measurement runs after 5 warmup iterations to ensure statistical 

validity and eliminate transient effects such as cache warming and just-in-time compilation. The 

performance data exhibited non-Gaussian distributions, particularly for execution time, necessitating 
non-parametric statistical methods for robust analysis. 

Figure 4 presents the execution time comparison across the three implementations. The Python 

implementation demonstrated superior computational efficiency with a median execution time of 
1.87 seconds (IQR: 1.84-1.91s), processing the entire 1500-sample dataset approximately 18.6 times 

faster than Julia and 2.3 times faster than R. The R implementation achieved moderate performance 

with a median execution time of 4.38 seconds (IQR: 4.32-4.44s). Surprisingly, the Julia 

implementation exhibited substantially higher computational cost with a median execution time of 
34.82 seconds (IQR: 33.64-36.18s), contradicting expectations based on Julia's reputation for high-

performance scientific computing. 

Statistical analysis using the Kruskal-Wallis test confirmed that the observed differences in execution 

time were highly significant %H � 1332.445, p � 0.001(, providing strong evidence against the null 

hypothesis of equal performance distributions. Post-hoc analysis using Dunn's test with Bonferroni 

correction for multiple comparisons revealed that all pairwise differences were statistically 

significant (p � 0.001 for all comparisons). The coefficient of variation in execution time was lowest 
for Python (2.3%) and R (2.5%), indicating consistent performance, while Julia showed higher 

variability (7.4%), suggesting less predictable execution characteristics potentially related to garbage 

collection or just-in-time compilation effects. 

 

 
Figure 4. Execution time comparison between Python, Julia, and R implementations. Each boxplot represents 

the distribution of 500 measurement runs. Python demonstrates the lowest execution time (median: 1.87s), 

followed by R (median: 4.38s), while Julia exhibits substantially higher computational cost (median: 34.82s). 

Note the consistent execution profiles for Python and R with minimal outliers, while Julia shows greater 

variability. 
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Effect size analysis using Cohen's d revealed extremely large practical differences between all 

implementation pairs: Julia vs. Python (d = 14.547), Julia vs. R (d = 13.265), and Python vs. R (d = 

-13.337). These effect sizes, all substantially exceeding the conventional threshold of 0.8 for "large" 

effects, highlight the enormous practical significance of language choice for computational 

efficiency. The performance gap between Python and Julia represents more than 33 seconds per 

execution, a difference that would accumulate to over 9.2 hours for 1000 simulation runs, 

demonstrating substantial practical implications for large-scale computational experiments or real-

time applications. Figure 5 presents the peak memory usage across implementations. The Python 

implementation demonstrated a stable memory footprint with a median peak usage of 97.67 MB 

(IQR: 97.64-97.68 MB) and minimal variance across runs. The Julia implementation showed a 

median peak memory usage of 132.45 MB (IQR: 131.89-133.12 MB), approximately 35.6% higher 

than Python. The R implementation exhibited the highest memory consumption with a median of 

168.21 MB (IQR: 167.95-168.53 MB), which is 72.2% higher than Python and 27.0% higher than 

Julia. The memory profiles were consistent across all implementations, with low coefficients of 

variation (Python: 0.03%, Julia: 0.46%, R: 0.21%), indicating predictable resource utilization 

patterns. 

Statistical analysis confirmed significant differences in memory usage across implementations 

(Kruskal-Wallis H � 1487.632, p � 0.001). Post-hoc analysis revealed that all pairwise 

comparisons were statistically significant (� � 0.001), with large effect sizes for all pairs: Python 

vs. Julia (d = -53.21), Python vs. R (d = -187.46), and Julia vs. R (d = -47.85). These effect sizes, 

much larger than those observed for execution time, highlight that memory efficiency differences are 

even more pronounced than computational speed differences. The consistent memory usage patterns 

observed across all implementations indicate robust and predictable resource management, which is 

valuable for deployments in resource-constrained environments. 

The performance characteristics observed across implementations can be attributed to several factors. 

The Python implementation leveraged NumPy's vectorized operations and optimized 

BLAS/LAPACK interfaces, allowing efficient matrix operations despite Python's interpreted nature. 

The object-oriented design in the Python implementation encapsulated the filter state and parameters 

while minimizing memory copying during recursive updates. Memory-efficient array views were 

utilized for state and covariance updates, contributing to Python's favorable memory profile. 

 
Figure 5. Peak memory usage comparison across implementations. The Python implementation exhibits the 

lowest memory consumption with a median of 97.67 MB, followed by Julia (median: 132.45 MB) and R 

(median: 168.21 MB). All three implementations demonstrate consistent memory profiles with minimal 

variation across runs. 
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The R implementation adopted a functional programming paradigm with immutable data structures, 

leveraging R's native BLAS implementation for matrix operations. While this approach provided 

acceptable performance, the copy-on-modify semantics of R likely contributed to both additional 

computational overhead compared to Python's in-place operations and increased memory 

consumption due to frequent data duplication. The tidyverse ecosystem facilitated data manipulation 

but may have introduced overhead through its emphasis on data frame operations rather than raw 

matrix computations. 

The Julia implementation, despite theoretical advantages for numerical computing, underperformed 

significantly in our benchmarks. Several factors may explain this unexpected result: (1) the 

implementation may not have fully leveraged Julia's performance features such as type stability and 

specialized multiple dispatch; (2) the benchmark methodology involving repeated process 

initialization could disadvantage Julia due to its just-in-time compilation model; (3) the small 

matrices (2×2) involved in this 1D filter may not have provided sufficient computational complexity 

for Julia's optimizations to overcome initial overheads; and (4) the specific Julia packages used may 

not have been as highly optimized as the mature NumPy ecosystem. The intermediate memory usage 

of Julia, while higher than Python, suggests some efficiency in memory management compared to 

R's approach, despite the computational performance issues. 

All three implementations maintained excellent numerical stability and produced consistent filtering 

results despite their performance differences. Position estimates agreed within 1.2 � 10��� m and 

velocity estimates within 5.8 � 10��� m/s across all implementations. The covariance evolution 

likewise showed consistent behavior, with final position variance of 2.937 m² and velocity variance 

of 94.72 (m/s)² across all implementations. This numerical consistency validates the mathematical 

robustness of the Kalman filter algorithm across different programming paradigms and confirms that 

performance differences stem from implementation efficiency rather than numerical properties. 

The significant performance variations observed in this study highlight the importance of empirical 

benchmarking for scientific computing applications. While Julia is designed for high-performance 

scientific computing, our results demonstrate that actual performance depends heavily on 

implementation details, problem characteristics, and benchmark methodology. For the specific case 

of a 1D Kalman filter processing 1500 samples, Python demonstrated clear superiority in both 

execution time and memory efficiency. For applications with strict computational efficiency 

requirements or those operating in resource-constrained environments, the Python implementation 

offers substantial practical advantages despite the theoretical performance capabilities of Julia. 

4. Conclusion 

This study evaluated a 1D linear Kalman filter implemented in Python, Julia, and R, examining both 

numerical accuracy and computational efficiency. Our results demonstrated the filter's effectiveness 

in state estimation, reducing position measurement noise by 73.1% and deriving accurate velocity 

information where direct numerical differentiation failed. All implementations achieved identical 

numerical results within machine precision (differences below 1.2 � 10��� m), while showing 

significant performance variations. The Python implementation exhibited superior efficiency with a 

median execution time of 1.87 seconds and lowest memory consumption (97.67 MB), substantially 
outperforming both R (4.38 seconds, 168.21 MB) and Julia (34.82 seconds, 132.45 MB). Statistical 

analysis confirmed these differences were highly significant (Kruskal-Wallis H � 1332.445, p �0.001 for execution time; H � 1487.632, p � 0.001 for memory usage). 

The unexpected performance characteristics across implementations highlight the importance of 

empirical benchmarking for scientific computing applications. While all three environments 
achieved equivalent filtering accuracy, their computational efficiency varied dramatically, with 

Python demonstrating an 18.6 � speed advantage over Julia despite theoretical expectations. These 
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findings have significant implications for practitioners implementing Kalman filters in time-critical 

or resource-constrained applications. Future work should extend this analysis to higher-dimensional 

problems, nonlinear filter variants, and parallel implementations to provide a more comprehensive 

understanding of performance scaling across modern scientific computing environments. 
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