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ABSTRACT

The purpose of this study is to investigate and compare several
nonparametric regression approaches, including penalized spline
methods, B-splines, and smoothing splines. Applying these techniques to
simulated and real datasets, such as Iraqi oil export data, focuses on
parameter estimation and identifying optimal knot points for predicting
periodic and nonlinear trends. The knot points are selected using
generalized cross-validation (GCV) to ensure an accurate fit to the data.
For time-series data with nonlinearities and periodic patterns in the
response variable, this research employs nonparametric regression with
sequential explanatory variables. We research simulated data that exhibit
periodic patterns similar to economic cycles, as well as nonlinear data
that employs complex equations to model interactions among variables.
Simulations were conducted across a range of standard deviations and

sample sizes. The efficiency of parameter estimation in these synthetic
datasets was quantified using the mean absolute average error (MAME).
For the empirical application, the parameters of the nonparametric
regression models were estimated using monthly Iraqi oil export data,
with the MAME employed as the evaluation metric. The effectiveness of
these techniques is further evaluated in forecasting future values by
calculating the mean absolute percentage error (MAPE). Among the
approaches, the penalized spline consistently achieves the lowest average
mean squared error across all standard deviation levels and sample sizes
in the simulated data, while also demonstrating robust forecasting
performance. In contrast, the smoothing spline outperforms the other
methods in terms of parameter estimation accuracy.

This is an open access article under the CC—BY-SA license.

1. Introduction

A statistical method known as regression analysis is used to identify the relationship between an
explanatory variable and a response variable. This method enables predictions of the dependent
variable from the independent variable. The assumptions underlying regression analysis are often
relevant only to specific variables in particular contexts. When a parametric model is inaccurate, it
can lead to misinterpretations that can significantly misguide decision-making. Moreover, there are
instances in which an appropriate parametric model does not exist [1], [2]. To overcome these
limitations, employing nonparametric regression techniques becomes a compelling solution. These
methods effectively estimate parameters in cases where data exhibit nonlinear relationships. The
technique of constructing a smoothing curve from available data is known as smoothing. This
approach is an excellent alternative when conventional parametric models fall short or when the
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assumptions underlying regression analysis are not met, ensuring reliable results in challenging
scenarios.[3].

Nonparametric regression is a valuable technique across many research and data analysis fields due
to its advantages. The model can capture complex, nonlinear relationships that parametric approaches
would miss due to its flexibility—observed that nonlinear models facilitated accurate fitting of
generalized additive models using nonparametric regression. To handle symmetric error
distributions, robust nonparametric regression techniques were developed. These approaches are
especially helpful in situations where the relationships in the data are poorly characterized or change
across sections. This method permits precise forecasts that, without imposing strict limitations,
capture complex patterns and variations in the data.[4]

In nonparametric regression, a response variable and one or more explanatory variables are typically
used. Instead of estimating regression coefficients, it mainly focuses on assessing a smoothing
function that gives a more accurate representation of the data. This smoothing function helps identify
the underlying trend between one or more explanatory variables and the response variable. The
scatterplot smoothing approach, which is used when there is only one explanatory variable, improves
the scatterplot's visual clarity and facilitates the identification of patterns in the relationship between
the descriptive and response variables.[5] Nonparametric regression is employed to determine the
relationship between variables without assuming a specific functional form, and the estimated
covariates are then incorporated into models in which multiple equations are solved concurrently.[6]

In the context of nonparametric regression, several methods are used to estimate nonparametric
regression models, including local polynomial regression, smoothing splines, regression splines,
kernel smoothing, and penalized splines.[7] In addition, nonparametric regression models were
specifically modified for use in time-series analysis, enabling the depiction of nonlinear interactions.
Furthermore, time series analysis has adopted nonparametric regression models, which permit the
modelling of possible nonlinear relationships. For assessing smooth structural changes in time series
models, Chen and Hong [8] suggested nonparametric estimate methods.

The principal aim of this study is to conduct a systematic evaluation and comparative analysis of
several nonparametric regression techniques—namely, smoothing splines, B-splines, and penalized
splines—within the context of time-series data characterized by cyclical patterns and nonlinear
dynamics. By applying these methods, the study seeks to improve the accuracy of both forecasting
and parameter estimation, particularly in settings where conventional parametric models are
insufficient to capture the underlying complexity of the data. This study's significant contribution is
that it applies these nonparametric approaches to real-world and simulated datasets, focusing on
Iraqg's monthly oil exports. This method demonstrates the importance of nonparametric regression in
addressing real-world challenges in energy forecasting. To illuminate the best approaches for various
types of data, the study compares and contrasts these methods using performance metrics, including
mean absolute average error (MAAE) and mean absolute percentage error (MAPE).In addition to
providing a thorough analysis that examines how the selection of knots and smoothing parameters
may affect prediction accuracy, this study advances the discipline of nonparametric regression by
demonstrating the adaptability of these models in capturing intricate nonlinear relationships. These
approaches are essential across sectors such as engineering, economics, and environmental research.
The results have important implications for future work in time series analysis, particularly in settings
where data do not conform to parametric assumptions.

The structure of this paper is described as follows: Section 2 presents the related work. Section 3
presents the methods and procedures used in this study: regression spline, B-spline, smoothing spline,
and penalized spline, as well as the estimation of smoothing parameters. Section 4 presents the
analysis of simulated data and reports the results. The final section presents a reasoned conclusion
based on the findings obtained from the simulation study and the real-data application.
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2. Materials And Methods
2.1 Related Work

Nonparametric regression estimates typically exhibit visible divergence from their parametric
counterparts due to fundamental differences in their underlying assumptions. Unlike parametric
methods that impose strong a priori assumptions regarding the functional form of the relationship
between variables, nonparametric regression employs flexible models. This inherent flexibility
enables nonparametric estimates to effectively capture intricate patterns and local variations present
within the data [9]. Consequently, nonparametric approaches demonstrate greater capacity to adapt
to the inherent structure of the data, potentially yielding more accurate and reliable predictions than
parametric methods constrained by prespecified functional forms. [5]

In contrast, parametric approaches often presuppose a specific distribution for the data. EL-Morshedy
et al.[10] highlighted the significance of parameter estimation in regression models by introducing
the discrete Burr—Hatke distribution. Nevertheless, nonparametric regression is appropriate for
analyzing data with uncertain or nonstandard distributions because it does not require such
assumptions. Gal et al. [11] suggested a technique for estimating parameters in nonparametric
regression using residuals based on symmetric and nonsymmetric distributions. In addition, many
parametric approaches are less effective than nonparametric regression in handling outliers and
influential data. The model is more resistant to extreme values because it focuses on local data points,
so outliers have less impact on the overall fit. To reduce the possibility of model misspecification,
Cizek and Sadikoglu [12] studied nonparametric regression and found that it needs just modest
identification assumptions.

Nonparametric regression is a well-known smoothing approach that has been used recently in several
different fields of study. Demir and Toktamis [13] investigated the adaptive kernel estimator for
long-tailed and multimodal distributions and the nonparametric kernel estimator with fixed
bandwidth. Shang and Cheng [14] addressed essential issues in the use of distribution algorithms by
developing a smoothing spline approach and computational trade-offs. To predict the yield curve,
Feng and Qian [15] presented a natural cubic spline model that is dynamic and uses a two-stage
process. Among the many uses of B-spline functions that Than and Tjahjowidodo [16] brought to
light were their implementations in CAD, numerical control systems, and computer graphics. Xiao
[17] investigated penalized splines extensively, including B-splines and an integrated squared
derivative penalty, in the context of large-sample asymptotic theory.

2.2 Regression Spline

The estimate of the relationship between the function of explanatory variables (m (x;)) and response
variables (y;) is the procedure that is involved in nonparametric regression. In this paper, we will
offer an overview of some of the more common techniques that are used in nonparametric regression
models:

yizm(zl')+€i,i=1,2,...,n (1)
where &; represents the error for each observation.

The smoothing technique is the basis of nonparametric regression, yielding a smoother. It is a
technique for predicting the function of predictor variables, as can be used to improve the appearance
of trends in the plot, with the support of a smoother. According to Eubank [18], who first proposed
the regression spline concept, a set of locations defines neighborhoods:

50! fl' 52' """ ) gmr fm+1 (2)

In the range of an interval [a, b], where a = & < & < -+ < &, < &p1 < b. The term for these
specific locations is denoted as knots, and &,.,7 = 1,2,..,m are called interior knots. Therefore, A
regression spline may be formed with the m-th degree truncated power basis with K knots

.8, yEm:
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1,z,,2% (2 = &), (i — &) Tp=M+m+1 3)

where uT* refer to the m-th power of the positive part of u , where u, = max( 0, u).The first (m + 1)
basis functions of the truncated power basis (3) are polynomials of degree up to m, and the others
are all the truncated power functions of degree m. Therefore, A regression spline can be described as

m(xi) Zf:o (przir + 25‘;1 (pk+j (Zi - f)f— (4)

where ¢° R ¢1 eeees ¢’< *K is the unknown regression coefficient that need to be determined with an
appropriate loss minimization method [19], [20]

2.3 B-Spline Regression Method

The spline model is a piecewise polynomial with piecewise-defined characteristics at intervals k,
defined by knot points. Points that represent changes in the data within subintervals are called knot
points. When the spline order is high, multiple knots or knots that are too close together will generate
a matrix that is practically singular in computation, which means that normal equations cannot be
solved. This is the most significant limitation of the spline method. The problem with B-splines is
that they cannot be assessed directly since their basis can only be defined recursively[21] .Therefore,
The B-spline basis function may be defined recursively as follows:

1¢6<z<é
U, = Ss s+1

Bs'(z) {0 otherwise )
where BX(z;) is the sth of the B-spline basis function of the order u for the knot points sequence
£.[22] For the piecewise polynomial function, Liu et al. [23] computed B-splines of any degree using
an algorithm. Evaluating the function of B-splines at the uth degree from the (u — 1) th degree can
be described as

B;L(Zi)Z zi=§s Bu—1+ $stu=—Zi Bg+_11 (6)

Eoru-1—8s ° $stu—§s+1

Where the basis of order ¥ with knot points {B¥|s = 1,2,...,K + u + 1}.A B-spline representation
of the nonparametric regression model can be described as follows:

yi =Z§=1B;n(zi) ]/S+£i’i = 1'2""’n' (7)

Hence, the following is the fitting of the function of B-splines assessed at the knots g , where s =
1..., K:

M(z;) = X5=1 B (2)) ¥s ®)

Moreover, the criteria for penalized least squares are as follows:

PLS = (y — BY)"(y — By) + Ayy

where{B};s = BI"(z;), {Q}is = [ B{ (z))B{ (z))dx,y = (y1,...,¥)Tis the coefficient regression
vector of the B-spline. Therefore, the solution of the function of the B-splines, denoted as 11, to the
problem of minimizing the PLS involves the following:

my = (BTB + Ax) BTy ©)]
24 Smoothing Spline Regression Method
The smoothing spline method's approximated process involves fitting a function of predictor

(m(zl.))

variables by minimizing the penalized least squares criterion, which is expressed by

PLS = RSS + A [ {m" (2))}? dx (10)
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where the first part RSS = ¥, {y; — m(z;}? is the residual of the square, and the second part

A f;{m” (2))}? dx is the roughness penalty in the interval [a,b], This is a curve metric known as the

smoothing parameter (A .Therefore, the second part (roughness penalty ) can be written in matrix
form

A [, m" )Y dx=m"H m (an
where m = (my,m,,....,m)",m,. = m(&,.),r = 1,2,.., k. [24] generally, k refers to the number
of knots, and &;,...., & are all the knot points of the smoothing spline such that may be arranged in

ascending order as
Therefore, the matrix H can be written as follows

H=CcDIcT (12)

where C is a matrix as ap X (p — 2)matrix, and D is a matrix as a (p=2)x(p-2) Therefore, from
(11) and (12), the penalized least square criterion can be described as

ly — wml||? + AmTHm (13)

y =(y1’y2""’yn)T

where are the response variable, and W = (wy,.) is an X P incidence matrix
with wy,=1 if z; = &.and otherwise, and ||y — mw||? = ¥, {y; — f(x)}?. [25] Consequently, the
smoothing spline function (71,) evaluated at knots &, r = 1,2,..., k may be expressed explicitly as
follows:

my = WWT + AH) " TWTy. (14)

2.5 Penalized Spline Regression Method

The smoothing spline approach requires computing an integral that quantifies the function's
roughness, whereas the penalized spline method addresses this issue by employing a truncated power
basis, as shown in Equation (3).

Lot 8= 80
AR
H:[QO’HI’...

represent the degree k truncated power basis with K knots

3(i),60

subsequently, we may articulate m(z;) in equation (1) as ,where

A
O] is the vector that represents the corresponding coefficient. [26] Let H be a

Xp . . . . .
p=p diagonal matrix, where the first k + 1 diagonal elements are set to zero and the remaining
diagonal entries are set to one. Therefore, the matrix H can be given as

00]

”=[0 I

A T A A
Moreover, the penalized smoothing spline is denoted as m, =0,(i) 9, where the value of & is

the PLS criteria that minimizes the following:

Penalized least squares (PLS) = (y — W8)T(y — W) + A0H6
Where W = (8,(z1),...,68,(2,))T,and OHO = ¥¥_, 62,

The penalized spline smoother is described as

my = WWTW + AH)" 1w Ty (15)
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2.6 Estimation of Smoothing Parameters

Specifically, the generalized cross-validation (GCV) that was proposed by Wahba [27] and Craven
[28] and Wahba is the primary focus of the smoothing parameter selection that is being discussed in
this study. The generalized cross-validation (GCV), which optimizes a smoothness selection
criterion, is the optimal value for the smoothing parameter. Minimizing the GCV function it
facilitates the selection of smoothing parameters. The function employs the following formula:

GCV (1) =§1;(ny_t+é])j (16)

where H of smoothing spline is I +AK , The B-spline is (BT B + A02,)~1BT, and penalized spline
is F(FTF + 23D)'FT

3.  Results and discussion

3.1 Simulation Study

This section presents a Monte Carlo simulation conducted in R to estimate the response variable and
evaluate the performance of Spline methods, including B-spline, smoothing spline, and penalized
spline. Accordingly, the explanatory response variable in the time-series data exhibits periodic

patterns and nonlinear features. Therefore, the periodic patterns observed in time series data are
simulated by using the following function:

zp = Jmecos(2m[1+ m]) + & t =123,..,n (17)

where & denotes an error term that follows a normal distribution with a mean of zero and standard
deviations 1,3, and 5, as demonstrated in Figures1-3.

n=100 n=150

o -

Simulated Values

Simulated Values

50 75 100 0 50 100 150
Time point (t) Time point (t)
n=200

Simulated Values

0 50 150 200

100
Time point (t)

Figure 1. The Plot of Periodic Patterns of Time Series for Different Sample Sizes With 0 = 1
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Figure 2. The Plot of Periodic Patterns of Time Series for Different Sample Sizes With 0 = 3
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Figure 3. The Plot of Periodic Patterns of Time Series for Different Sample Sizes With 0 = 5

Furthermore, the response variables with utilized of nonlinear shapes are simulated by using the

following function:

me+20

z, = ZJnTtsin(Zn[ﬂ])+et,t= 12,....n

(18)

where & denotes an error term that follows a normal distribution with a mean of zero and standard
deviations 1,3, and 5, as demonstrated in Figures4-6.
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Figure 5. The Plot of Nonlinear Shapes of Time Series for Different Sample Sizes With o = 3
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Figure 6. The Plot of Nonlinear Shapes of Time Series for Different Sample Sizes With ¢ = 5

3.2 Simulation Design

This simulations study utilized five different sample sizes: n=100,150,200,250, and 300 with three
different standard deviations values: ¢ = 1,3,and 5. Furthermore, the data generated were replicated
1000 times for each sample sizes to determine the best spline nonparametric regression method was
applied to predict time series data characterized by periodic patterns and nonlinear shapes in the
response variable, with explanatory variable considered as sequential data.

Therefore, the generalized cross-validation (GCV) is used to choose the optimal smoothing
parameter estimation as well as the cross-validation method (CV), while the number of knots is
controlled and specified using cross-validation procedures, which ensure the curve suitably fits the
data points.

3.3 Simulation Result

Tables 1, 2, and 3 present the values of the Mean Average Absolute Error (MAAE) and the number
of knot points for spline methods that were applied in the periodic patterns and nonlinear time series
data for all sample sizes 100, 150, 200, 250, and 300 under different values of standard deviation of
error as 1, 3, and 5.

Table 1. The Values of Mean Average Absolute Error (MAAE) and the Mean of the Knot Point for Different
Sample Sizes with o = 1

Nonlinear Periodic patterns
n Methods MAAE No. of MAAE No. of
knots knots
B-Spline 0.623547 99 0.277846 99
100 Penalized spline 0.256635 100 0.231000 100
Smoothing Spline 0.325871 65 0.463913 65
B-Spline 0.836252 140 0.629568 140
150 Penalized spline 0.478959 145 0.418975 145
Smoothing Spline 0.562514 90 0.547623 90
B-Spline 0.992571 193 0.780542 193
200 Penalized spline 0.505439 197 0.671000 197
Smoothing Spline 0.987871 120 0.717160 121
B-Spline 1.094318 240 1.186803 240
250 Penalized spline 0.820787 235 0.632654 235
Smoothing Spline 0.976725 180 1.212508 180
B-Spline 1.720780 283 1.182154 283
300 Penalized spline 0.948713 291 0.876321 291
Smoothing Spline 1.070494 225 0.996325 225
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Table 2. The Values of Mean Average Absolute Error (Maae) and the Mean of the Knot Points for Different
Sample Sizes With 0 = 3

N Methods Nonlinear Periodic patterns
MAAE No. of knots MAAE No. of knots
B-Spline 0.743992 99 0.554278 99
100 Penalized spline 0.474869 100 0.399641 100
Smoothing Spline 0.599272 65 0.722549 65
B-Spline 0.508108 140 0.588418 140
150 Penalized spline 0.456979 145 0.433687 145
Smoothing Spline 0.642273 90 0.6774215 90
B-Spline 0.556112 193 1.02537778 193
200 Penalized spline 0.495113 197 0.744865 197
Smoothing Spline 0.936218 120 1.188651 121
B-Spline 1.093273 240 1.100456 240
250 Penalized spline 0.507539 235 0.782214 235
Smoothing Spline 0.898173 180 0.978214 180
B-Spline 1.451603 283 1.187922 283
300 Penalized spline 0.675219 291 0.822169 291
Smoothing Spline 0.906713 225 0.922314 225

Table 3. The Values of Mean Average Absolute Error (MAAE) and the Mean of the Knot Points for Different
Sample Sizes with 0 = 5

n Methods Nonlinear Periodic patterns
MAAE No. of knots MAAE No. of knots
B-Spline 0.854213 99 0.622154 99
100 Penalized spline 0.317659 100 0.6188974 100
Smoothing Spline 0.862231 65 0.9123541 65
B-Spline 1.022845 140 0.922514 140
150 Penalized spline 0.725146 145 0.811236 145
Smoothing Spline 0.933126 90 0.988745 90
B-Spline 0.900326 193 0.778965 193
200 Penalized spline 0.890148 197 0.633145 197
Smoothing Spline 0.978641 120 0.855263 121
B-Spline 0.455623 240 1.200354 240
250 Penalized spline 0.811879 235 0.844567 235
Smoothing Spline 1.003265 180 1.188976 180
B-Spline 1.233654 283 0.665532 283
300 Penalized spline 0.974561 291 0.447158 291
Smoothing Spline 1.122302 225 0.881135 225

As shown in Tables 1, 2, and 3, the mean absolute error (MAAE) for the periodic data differs slightly
from that for the nonlinear data. Therefore, the mean average absolute error (MAAE) for the
smoothing spline method is higher than that of other methods, and there are fewer knots utilized.
Furthermore, the increase in standard deviation corresponds to a rise in the mean absolute error
(MAE), indicating an effect on the model's fitness. Despite the increase in sample size, parameter
estimates remained consistent, indicating robustness to variations in sample size. Therefore, the
penalized spline method consistently outperformed the other nonparametric regression models.

3.4 Real Data Application

Since the beginning, Iraqi oil exports have significantly contributed to the country's economy. This
is because oil exports contribute to energy security, primary energy production, industrial usage,
human development, and other areas of economic growth. The Iragi economy is extremely dependent
on oil exports. This study used a dataset of Iraq's oil exports, comprising 228 monthly records from
January 2005 to December 2024. The dataset shows a nonlinear trend and periodic patterns with a
component of seasons, as Figure 7 illustrates.
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Oil Export of Iraq
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Figure 7. The Time Series Plot of Oil Export of Iraq

The real data analysis employed three nonparametric approaches to determine the smoothing
function for Iraq's oil exports. These were the smoothing spline, the B-spline, and the penalized
spline. A sequence of 228 months refers to the explanatory variable, while the monthly oil export
volume (Million barrels) serves as the response variable. The Mean Absolute Error (MAE) is a metric
used to evaluate a model's precision, defined as the average of absolute differences between expected
and actual values. The accuracy of the prediction is evaluated in percentage terms by the Mean
Absolute Percentage Error (MAPE). MAAE and MAPE are used to assess forecasting and estimate
precision. Therefore, the following are the equations used to calculate MAAE and MAPE:

1 ~ .
MAAE =E2f:2f|yi —9il,i=12,....,228 (19)

MAPE = 3228 |90 x 100,¢ = 1,23,... 228 (20)
228 yi

Moreover, the Mean Average Absolute Error (MAAE) and knot points are approximated from the
spline methods as: smoothing spline, B-spline, and penalized spline as shown in Figure 8.

Smoothing Spline B-Spline
160 g°p L 160 P =
fa fa
a a
% %
Ll Ll
o o
0
2006 2010 2014 2018 2022 2006 2010 2014 2018 2022
Month Month

Penalized Spline

160

Oil Exports

0o
2006 2010 2014 2018 2022
Maonth

Figure 8. The Fitted Nonparametric Regression Model of Iraq’s Oil Export

The fitted nonparametric regression models of all methods, the smoothing spline, B-splines, and
penalized spline, make it hard to pick the best method, as shown in the figure above. The
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outperforming method is then investigated using mean average absolute error (MAAE). Therefore,
Table 4 presents the MAAE values and the number of knot points.

Table 4. The MAAE Values and Knot Points for Estimating the Nonparametric Regression Spline

B-spline Penalized spline Smoothing spline
Knots MAAE Knots MAAE Knots MAAE
205 16893.221 220 15487.221 185 19845.554

The results in the table above indicate that the best knot points and the mean absolute error (MAE)
for nonparametric smoothing methods are achieved by B-spline, smoothing spline, and penalized
spline. The penalized spline method yields the most accurate estimates for this dataset, as it has the
lowest mean absolute error (MAE).

Furthermore, the estimate is followed by the use of these nonparametric regression models to forecast
values for the next 12 months. The MAPE is then calculated to evaluate accuracy over the specified
period. All methods are shown in Table 5, which includes the actual data, expected values, and the
MAPE.

Table 5. The Amount of Oil Export Per Month, Forecasting Values for 12 Months, and MAPE.

Months Qil export per month B-spline Smoothing spline Penalized spline
January 3365123.78 3164123.18 3154122.20 3465140.08
February 3275148.65 3163120.05 3155110.85 3385048.75
March 3250698.22 3150597.32 3140580.25 3360799.22
April 3350862.98 3150761.99 3147675.88 3460963.18
May 3150963.11 3050883.23 3040873.20 3260973.10
June 3450899.88 3440889.45 3439779.95 3480998.95
July 3516981.85 3514861.80 3513850.70 3618991.99
August 3475187.66 3455170.55 3450175.99 3495199.86
September 3514189.47 3513186.35 3512155.05 3519396.97
October 3315264.87 3313340.60 3312541.75 3418274.99
November 3400145.96 3400125.75 3400120.50 3500199.86
December 3375487.33 3365477.20 3335455.25 3498697.93
January 3250142.27 3240130.15 3241125.23 3390182.87
MAPE 11.4897 9.8865 5.7996

Based on the table above, the most suitable method for estimating the actual data is penalized spline
nonparametric regression. It outperformed the other techniques in predicting future values, achieving
the lowest mean absolute percentage error (MAPE) of 5.7996. This indicates that the penalized spline
method achieves high accuracy in future predictions. Additionally, the B-spline method
outperformed the smoothing spline in prediction accuracy, with an MAPE of 9.8865.

Therefore, Figure 9 compares three non-parametric regression methods—B-splines, smoothing
splines, and penalized splines—for modelling Iraq's oil exports over 12 months. Both B-splines and
smoothing splines closely follow the data points, whereas the penalized spline also performs well but
yields a smoother curve. Notably, the smoothing spline exhibits greater variation and deviates from
the other methods, especially around months 10 and 11. Overall, B-splines and penalized splines
demonstrate the best fit for accurately forecasting oil exports.

Amjed Mohammed Sadek et.al (Parameters and Knot Points Estimation ...)



ISSN 2722-2039 International Journal of Data Science 67
Vol. 6, No. 1, June 2025, pp. 54-69

2000
1800 [ /
-,
o o 4
. p
L ’
1600 4
p=t g
=]
3
o 1400
5
1200 [
1000 |
800 L . . L L ;
2 4 [ 8 10 12
Month
‘ ®  Actual Data Smoothing Spline = = = B-Spline Penalized Spllm‘

Figure 9. Plot of Actual Data and Predictions Over 12 Future Months

As shown in Table 6, the three non-parametric regression techniques require more knots to predict
future data than to fit the actual datasets. Nevertheless, finding the best knots may not always be a
significant undertaking, and increasing the number of knots does not necessarily indicate the best
method. Based on this study, smoothing splines and B-splines use the same knot approach as [29];
however, penalized splines are better at predicting future values. The relationship between the
explanatory variables and the response variables may vary at particular points in the space of the
explanatory variables, referred to as knots. They are frequently employed in spline-based
nonparametric regression methods, such as cubic splines and piecewise linear regression, thereby
enhancing model flexibility and accuracy.

Table 6. The Mean Average Absolute Error (MAAE), Mean Absolute Percentage Error (MAPE), and The
Number of Knot Points for Iraq’s Oil Export

Knot B-spline Smoothing spline Penalized spline
MAAE MAPE MAAE MAPE MAAE MAPE
50 75,8545.1 35.986 95,4658.1 30.963 60,8865.2 30.554
100 60,3567.4 33.265 90,4625.7 27.125 53,4469.5 26.145
150 57,1548.6 33.154 88,9875.2 22.189 47,4458.1 21.112
200 55,5241.9 32.758 88,6532.1 17.332 41,8874.2 15.789

4. Conclusion

This study is significant because it compares popular nonparametric regression methods on
simulated and real-world data, including smoothing splines, B-splines, and penalized splines.
Standard deviations and sample sizes are used to simulate periodic patterns and nonlinear forms. In
addition, using a real dataset, such as Iraq's oil exports, yielded fitted model results that were similar
to those derived from the simulated data. As noted, penalized splines perform well for predicting
future values. Although these are advantages, nonparametric regression also entails difficulties,
including the risk of overfitting, the need for larger sample sizes, and greater analytical complexity.
Future studies should investigate other nonparametric regression methods, such as kernel smoothing
or local polynomial regression, and increase the number of knots to improve model accuracy. It
would be possible to test these methods on datasets of varying complexity. To conduct a
comprehensive assessment of forecasting accuracy, it will also be necessary to consider the
computational efficiency of larger datasets and to use alternative error metrics, such as root mean
square error (RMSE) or mean absolute error (MAE).

References

[1] A. M. Sadek and L. M. Ali, "Developing a mixed nonparametric regression modeling (simulation study)," J. Theor.
Appl. Inf. Technol., vol. 101, no. 21, pp. 6988—7000, 2023.

Amjed Mohammed Sadek et.al (Parameters and Knot Points Estimation ...)



68

[2]

(3]

[4]

[5]

(6]

(7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

International Journal of Data Science ISSN 2722-2039
Vol. 6, No. 1, June 2025, pp. 54-69

H. M. Khalaf and A. S. A. Sulaiman, "New method for finding the weight distribution and spectrum by testing the
optimal solution of the points in PG(3,2)," J. Theor. Appl. Inf. Technol., vol. 102, no. 9, pp. 3725-3729, 2024.

M. Salibian-Barrera, "Robust nonparametric regression: Review and practical considerations," Econom. Stat., vol.
31, pp. 363-379, Jan. 2024, doi: 10.1016/j.ecosta.2023.04.004.

S. Amodio, M. Aria, and A. D'Ambrosio, "On concavity in nonlinear and nonparametric regression
models," Statistica, vol. 74, no. 1, pp. 85-98, 2014.

A. M. Sadek and L. A. Mohammed, "Evaluation of the performance of kernel non-parametric regression and
ordinary least squares regression," JOIV: Int. J. Inform. Vis., vol. 8, no. 3, pp. 1352-1359, Sep. 2024,
doi:10.62527/joiv.8.3.2430.

R. L. Eubank, Nonparametric Regression and Spline Smoothing, 2nd ed. Boca Raton, FL, USA: CRC Press, 1999.
doi: 10.1201/9781482273144.

W. Hirdle, Applied Nonparametric Regression. Cambridge, U.K.: Cambridge Univ. Press, 1990.
doi:10.1017/CCOL05213824383.

B. Chen and Y. Hong, "Testing for smooth structural changes in time series models via nonparametric
regression,” Econometrica, vol. 80, no. 3, pp. 1157-1183, May 2012, doi: 10.3982/ECTA7990.

J. Kloke and J. McKean, Nonparametric Statistical Methods Using R. Boca Raton, FL, USA: Chapman and
Hall/CRC, 2024. doi: 10.1201/9781003039617.

M. El-Morshedy, M. S. Eliwa, and E. Altun, "Discrete Burr-Hatke distribution with properties, estimation methods
and regression model," IEEE Access, vol. 8, pp. 74359-74370, 2020, doi: 10.1109/ACCESS.2020.2988431.

Y. Gai, X. Zhu, and J. Zhang, "Testing symmetry of model errors for nonparametric regression models by using
correlation coefficient," Commun. Stat. Simul. Comput., vol. 51, no. 4, pp. 1436-1453, 2022,
doi:10.1080/03610918.2019.1670844.

P. Cizek and S. Sadikoglu, "Robust nonparametric regression: A review," Wiley Interdiscip. Rev. Comput. Stat.,
vol. 12, no. 3, p. €1492, May 2020, doi: 10.1002/wics.1492.

S. Demir and O. Toktamis, "On the adaptive Nadaraya-Watson kernel regression estimators," Hacet. J. Math. Stat.,
vol. 39, no. 3, pp. 429437, 2010.

Z. Shang and G. Cheng, "Computational limits of a distributed algorithm for smoothing spline," J. Mach. Learn.
Res., vol. 18, no. 1, pp. 3809-3845, 2017.

P. Feng and J. Qian, "Forecasting the yield curve using a dynamic natural cubic spline model," Econ. Lett., vol.
168, pp. 7376, Jul. 2018, doi: 10.1016/j.econlet.2018.04.009.

D. Van Than and T. Tjahjowidodo, "A direct method to solve optimal knots of B-spline curves: An application for
non-uniform  B-spline curves fitting," PLoS ONE, vol. 12, no. 3, p. 0173857, Mar. 2017,
doi:10.1371/journal.pone.0173857.

L. Xiao, "Asymptotic theory of penalized splines," Electron. J. Stat., vol. 13, no. 1, pp. 747-794, 2019,
doi:10.1214/19-EJS1541.

D. Ruppert, "Nonparametric regression and spline smoothing," J. Amer. Stat. Assoc., vol. 96, no. 456, pp. 1387—
1388, Dec. 2001, doi: 10.1198/016214501753382417.

A. Perperoglou, W. Sauerbrei, M. Abrahamowicz, and M. Schmid, "A review of spline function procedures in
R," BMC Med. Res. Methodol., vol. 19, no. 1, p. 46, Mar. 2019, doi: 10.1186/s12874-019-0666-3.

L. C. Marsh and D. R. Cormier, Spline Regression Models. Thousand Oaks, CA, USA: SAGE Publications, 2001.
doi: 10.4135/9781412985901.

S. N. Wood, Generalized Additive Models: An Introduction with R, 2nd ed. Boca Raton, FL, USA: Chapman and
Hall/CRC, 2017. doi: 10.1201/9781315370279.

T. Lyche, C. Manni, and H. Speleers, "Foundations of spline theory: B-splines, spline approximation, and
hierarchical refinement," in Splines and PDEs: From Approximation Theory to Numerical Linear Algebra, M.
Bozzini, T. Lyche, and G. Monegato, Eds. Cham, Switzerland: Springer, 2018, pp. 1-76. doi: 10.1007/978-3-319-
94911-6_1.

X. Liu, X. Wang, Z. Wu, D. Zhang, and X. Liu, "Extending Ball B-spline by B-spline," Comput. Aided Geom. Des.,
vol. 82, p. 101926, Sep. 2020, doi: 10.1016/j.cagd.2020.101926.

Y. Wang, Smoothing Splines: Methods and Applications. Boca Raton, FL, USA: CRC Press, 2011.
doi:10.1201/b10954.

C. Ke and Y. Wang, "Smoothing spline nonlinear nonparametric regression models," J. Amer. Stat. Assoc., vol. 99,
no. 468, pp. 1166-1175, Dec. 2004, doi: 10.1198/016214504000000755.

Amjed Mohammed Sadek et.al (Parameters and Knot Points Estimation ...)



ISSN 2722-2039 International Journal of Data Science 69
Vol. 6, No. 1, June 2025, pp. 54-69
-

[26]  G.Kauermann, "A note on smoothing parameter selection for penalized spline smoothing," J. Stat. Plan. Inference,
vol. 127, no. 1-2, pp. 53-69, Jan. 2005, doi: 10.1016/j.jspi.2003.09.023.

[27]  G. Wahba, Spline Models for Observational Data. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics (SIAM), 1990. doi: 10.1137/1.9781611970128.

[28]  P.Craven and G. Wahba, "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing
by the method of generalized cross-validation," Numer. Math., vol. 31, no. 4, pp. 377-403, Dec. 1978,
doi:10.1007/BF01404567.

[29]  A. Wytyczak-Partyka, "Organ surface reconstruction using B-splines and Hu moments," Acta Polytech. Hung., vol.
11, no. 10, pp. 163-179, 2014. doi: 10.12700/APH.11.10.2014.10.9.

Amjed Mohammed Sadek et.al (Parameters and Knot Points Estimation ...)



