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1. Introduction  

A statistical method known as regression analysis is used to identify the relationship between an 
explanatory variable and a response variable. This method enables predictions of the dependent 
variable from the independent variable. The assumptions underlying regression analysis are often 
relevant only to specific variables in particular contexts. When a parametric model is inaccurate, it 
can lead to misinterpretations that can significantly misguide decision-making. Moreover, there are 
instances in which an appropriate parametric model does not exist [1], [2]. To overcome these 
limitations, employing nonparametric regression techniques becomes a compelling solution. These 
methods effectively estimate parameters in cases where data exhibit nonlinear relationships. The 
technique of constructing a smoothing curve from available data is known as smoothing. This 
approach is an excellent alternative when conventional parametric models fall short or when the 
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 The purpose of this study is to investigate and compare several 
nonparametric regression approaches, including penalized spline 
methods, B-splines, and smoothing splines. Applying these techniques to 
simulated and real datasets, such as Iraqi oil export data, focuses on 
parameter estimation and identifying optimal knot points for predicting 
periodic and nonlinear trends. The knot points are selected using 
generalized cross-validation (GCV) to ensure an accurate fit to the data. 
For time-series data with nonlinearities and periodic patterns in the 
response variable, this research employs nonparametric regression with 
sequential explanatory variables. We research simulated data that exhibit 
periodic patterns similar to economic cycles, as well as nonlinear data 
that employs complex equations to model interactions among variables. 
Simulations were conducted across a range of standard deviations and 
sample sizes. The efficiency of parameter estimation in these synthetic 
datasets was quantified using the mean absolute average error (MAME). 
For the empirical application, the parameters of the nonparametric 
regression models were estimated using monthly Iraqi oil export data, 
with the MAME employed as the evaluation metric. The effectiveness of 
these techniques is further evaluated in forecasting future values by 
calculating the mean absolute percentage error (MAPE). Among the 
approaches, the penalized spline consistently achieves the lowest average 
mean squared error across all standard deviation levels and sample sizes
in the simulated data, while also demonstrating robust forecasting 
performance. In contrast, the smoothing spline outperforms the other 
methods in terms of parameter estimation accuracy. 
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assumptions underlying regression analysis are not met, ensuring reliable results in challenging 
scenarios.[3]. 

Nonparametric regression is a valuable technique across many research and data analysis fields due 
to its advantages. The model can capture complex, nonlinear relationships that parametric approaches 
would miss due to its flexibility—observed that nonlinear models facilitated accurate fitting of 
generalized additive models using nonparametric regression. To handle symmetric error 
distributions, robust nonparametric regression techniques were developed. These approaches are 
especially helpful in situations where the relationships in the data are poorly characterized or change 
across sections. This method permits precise forecasts that, without imposing strict limitations, 
capture complex patterns and variations in the data.[4] 

In nonparametric regression, a response variable and one or more explanatory variables are typically 
used. Instead of estimating regression coefficients, it mainly focuses on assessing a smoothing 
function that gives a more accurate representation of the data. This smoothing function helps identify 
the underlying trend between one or more explanatory variables and the response variable. The 
scatterplot smoothing approach, which is used when there is only one explanatory variable, improves 
the scatterplot's visual clarity and facilitates the identification of patterns in the relationship between 
the descriptive and response variables.[5] Nonparametric regression is employed to determine the 
relationship between variables without assuming a specific functional form, and the estimated 
covariates are then incorporated into models in which multiple equations are solved concurrently.[6] 

In the context of nonparametric regression, several methods are used to estimate nonparametric 
regression models, including local polynomial regression, smoothing splines, regression splines, 
kernel smoothing, and penalized splines.[7] In addition, nonparametric regression models were 
specifically modified for use in time-series analysis, enabling the depiction of nonlinear interactions. 
Furthermore, time series analysis has adopted nonparametric regression models, which permit the 
modelling of possible nonlinear relationships. For assessing smooth structural changes in time series 
models, Chen and Hong [8] suggested nonparametric estimate methods. 

The principal aim of this study is to conduct a systematic evaluation and comparative analysis of 
several nonparametric regression techniques—namely, smoothing splines, B-splines, and penalized 
splines—within the context of time-series data characterized by cyclical patterns and nonlinear 
dynamics. By applying these methods, the study seeks to improve the accuracy of both forecasting 
and parameter estimation, particularly in settings where conventional parametric models are 
insufficient to capture the underlying complexity of the data. This study's significant contribution is 
that it applies these nonparametric approaches to real-world and simulated datasets, focusing on 
Iraq's monthly oil exports. This method demonstrates the importance of nonparametric regression in 
addressing real-world challenges in energy forecasting. To illuminate the best approaches for various 
types of data, the study compares and contrasts these methods using performance metrics, including 
mean absolute average error (MAAE) and mean absolute percentage error (MAPE).In addition to 
providing a thorough analysis that examines how the selection of knots and smoothing parameters 
may affect prediction accuracy, this study advances the discipline of nonparametric regression by 
demonstrating the adaptability of these models in capturing intricate nonlinear relationships. These 
approaches are essential across sectors such as engineering, economics, and environmental research. 
The results have important implications for future work in time series analysis, particularly in settings 
where data do not conform to parametric assumptions. 

The structure of this paper is described as follows: Section 2 presents the related work. Section 3 
presents the methods and procedures used in this study: regression spline, B-spline, smoothing spline, 
and penalized spline, as well as the estimation of smoothing parameters. Section 4 presents the 
analysis of simulated data and reports the results. The final section presents a reasoned conclusion 
based on the findings obtained from the simulation study and the real-data application. 
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2. Materials And Methods 

2.1 Related Work  

Nonparametric regression estimates typically exhibit visible divergence from their parametric 
counterparts due to fundamental differences in their underlying assumptions. Unlike parametric 
methods that impose strong a priori assumptions regarding the functional form of the relationship 
between variables, nonparametric regression employs flexible models. This inherent flexibility 
enables nonparametric estimates to effectively capture intricate patterns and local variations present 
within the data [9]. Consequently, nonparametric approaches demonstrate greater capacity to adapt 
to the inherent structure of the data, potentially yielding more accurate and reliable predictions than 
parametric methods constrained by prespecified functional forms. [5] 

In contrast, parametric approaches often presuppose a specific distribution for the data. EL-Morshedy 
et al.[10] highlighted the significance of parameter estimation in regression models by introducing 
the discrete Burr–Hatke distribution. Nevertheless, nonparametric regression is appropriate for 
analyzing data with uncertain or nonstandard distributions because it does not require such 
assumptions. Gal et al. [11] suggested a technique for estimating parameters in nonparametric 
regression using residuals based on symmetric and nonsymmetric distributions. In addition, many 
parametric approaches are less effective than nonparametric regression in handling outliers and 
influential data. The model is more resistant to extreme values because it focuses on local data points, 
so outliers have less impact on the overall fit. To reduce the possibility of model misspecification, 
Cizek and Sadikoglu [12] studied nonparametric regression and found that it needs just modest 
identification assumptions. 

Nonparametric regression is a well-known smoothing approach that has been used recently in several 
different fields of study. Demir and Toktamis [13] investigated the adaptive kernel estimator for 
long-tailed and multimodal distributions and the nonparametric kernel estimator with fixed 
bandwidth. Shang and Cheng [14] addressed essential issues in the use of distribution algorithms by 
developing a smoothing spline approach and computational trade-offs. To predict the yield curve, 
Feng and Qian [15] presented a natural cubic spline model that is dynamic and uses a two-stage 
process. Among the many uses of B-spline functions that Than and Tjahjowidodo [16] brought to 
light were their implementations in CAD, numerical control systems, and computer graphics. Xiao 
[17] investigated penalized splines extensively, including B-splines and an integrated squared 
derivative penalty, in the context of large-sample asymptotic theory. 

2.2 Regression Spline 

The estimate of the relationship between the function of explanatory variables (m (��)) and response 
variables (��) is the procedure that is involved in nonparametric regression. In this paper, we will 
offer an overview of some of the more common techniques that are used in nonparametric regression 
models: 

 �� = ����� + 
� , � = 1,2, . . . , � (1) 

where 
� represents the error for each observation. 

The smoothing technique is the basis of nonparametric regression, yielding a smoother. It is a 
technique for predicting the function of predictor variables, as can be used to improve the appearance 
of trends in the plot, with the support of a smoother. According to Eubank [18], who first proposed 
the regression spline concept, a set of locations defines neighborhoods: 

 ��, ��, ��, . . . . . , ��, ����  (2) 

In the range of an interval ��, ��, where � = �� < �� < ⋯ < �� < ���� < �. The term for these 
specific locations is denoted as knots, and �� , � = 1,2, . . , � are called interior knots. Therefore, A 
regression spline may be formed with the m-th degree truncated power basis with K knots 
��, ��, . . . . . , ��: 
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 1, �� , ⋯ , ���, ��� − �����, . . . . , ��� − �����,  = ! + � + 1 (3) 

where "�� refer to the m-th power of the positive part of " , where "� = ���� 0, "�.The first �� + 1� 
basis functions of the truncated power basis (3) are polynomials of degree up to m, and the others 
are all the truncated power functions of degree m. Therefore, A regression spline can be described as 

 ����� ∑ %����
&
�'� + ∑ %(�)��� − ���

&&
)'�  (4) 

where , ,….., is the unknown regression coefficient that need to be determined with an 
appropriate loss minimization method [19], [20] 

2.3 B-Spline Regression Method 

The spline model is a piecewise polynomial with piecewise-defined characteristics at intervals k, 
defined by knot points. Points that represent changes in the data within subintervals are called knot 
points. When the spline order is high, multiple knots or knots that are too close together will generate 
a matrix that is practically singular in computation, which means that normal equations cannot be 
solved. This is the most significant limitation of the spline method. The problem with B-splines is 
that they cannot be assessed directly since their basis can only be defined recursively[21] .Therefore, 
The B-spline basis function may be defined recursively as follows: 

 *+,���� = -1 ,�+ < � < �+��
0   otherwise

 (5) 

where  *+,���� is the ./ℎ of the B-spline basis function of the order " for the knot points sequence 
�.[22] For the piecewise polynomial function, Liu et al. [23] computed B-splines of any degree using 
an algorithm. Evaluating the function of B-splines at the "/ℎ degree from the (u − 1) th degree can 
be described as  

 *+,���� = 12345
456789345

*+,3� + 4567312
456734+�� *+��,3� (6) 

Where the basis of order with knot points {*+,|. = 1,2, . . . , < + " + 1}.A B-spline representation 
of the nonparametric regression model can be described as follows: 

 �� = ∑ *+�����(+'�  ?+ + 
� , � = 1,2, . . . , �. (7) 

Hence, the following is the fitting of the function of B-splines assessed at the knots , where s = 
1..., K: 

 �@���� = ∑ *+�����(+'� ?+ (8) 
Moreover, the criteria for penalized least squares are as follows: 

 ABC = �� − *?�D�� − *?� + E?F(?  
where{*}�+ = *+�����, {F(}�+ = G *�H����*+H����I�, ? = �?�, . . . , ?�Dis the coefficient regression 
vector of the B-spline. Therefore, the solution of the function of the B-splines, denoted as �@J, to the 
problem of minimizing the PLS involves the following:  

 �@J = �*D* + EFK�3�*D� (9) 

2.4 Smoothing Spline Regression Method  

The smoothing spline method's approximated process involves fitting a function of predictor 

variables  by minimizing the penalized least squares criterion, which is expressed by  

 ABC = LCC + E G {�H����}�M
N I� (10) 

0ϕ 1ϕ k Kϕ +

u

sξ

( )( )
i

m z
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where the first part RSS = ∑ {�� − ����}�O�'�  is the residual of the square, and the second part  

E G {�H����}�M
N I� is the roughness penalty in the interval [a,b], This is a curve metric known as the 

smoothing parameter .Therefore, the second part  (roughness penalty ) can be written in matrix 
form   

 E G {�H����}�M
N I� =  (11) 

where � = ���, ��, . . . . , �(�D, �� = �����, � = 1,2, . . , P. [24] generally, k refers to the number 
of knots, and ��, . . . . , �( are all the knot points of the smoothing spline such that may be arranged in 
ascending order as   

 −∞ ≤ � < �� < �� < ⋯ < �( < � ≤ ∞  

Therefore, the matrix H can be written as follows  

 S = T D3�TD (12) 

where C is a matrix as a  × � − 2�matrix, and D is a matrix as a  Therefore, from 
(11) and (12), the penalized least square criterion can be described as  

 ‖� − W�‖� + E�DS� (13) 

where are the response variable, and X = �W��� is an incidence matrix 
with W��=1 if �� = ��and otherwise, and ‖� − �W‖� = ∑ {�� − Y����}�O�'� . [25] Consequently, the 
smoothing spline function (�@J) evaluated at knots ��  � = 1,2, . . . , P  may be expressed explicitly as 
follows: 

 �@J = �XXD + ES�3�XD�. (14) 

2.5 Penalized Spline Regression Method  

The smoothing spline approach requires computing an integral that quantifies the function's 
roughness, whereas the penalized spline method addresses this issue by employing a truncated power 
basis, as shown in Equation (3).  

Let represent the degree k truncated power basis with K knots 

. subsequently, we may articulate ����� in equation (1) as ,where 

is the vector that represents the corresponding coefficient. [26] Let H be a 

diagonal matrix, where the first k + 1 diagonal    elements are set to zero and the remaining 
diagonal entries are set to one. Therefore, the matrix H can be given as  

 S = Z0 0
0 [�\  

Moreover, the penalized smoothing spline is denoted as , where the value of   is 
the PLS criteria that minimizes the following: 

Penalized least squares (PLS) = �� − X]�D�� − X]� + E]S] 

Where X = �^�����, . . . , ^���O��D ,and ]S] = ∑ ](���(�'�  

The penalized spline smoother is described as 

 �@J = X�XDX + ES�3�XD� (15) 

( )λ

 Tm H m

( 2) ( 2)p p− × −

1 2( , ,..., )T

ny y y y= n p×

1( ) ( ( ), , ( ))T

r ri i iδ δ δ= L

1 2, , , Kξ ξ ξL ( )riδ θ

0 1[ , , , ]Tk kθ θ θ θ += L

p p×

ˆˆ ( )T

r
m iλ δ θ= θ̂
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2.6 Estimation of Smoothing Parameters  

Specifically, the generalized cross-validation (GCV) that was proposed by Wahba [27] and Craven 
[28] and Wahba is the primary focus of the smoothing parameter selection that is being discussed in 
this study. The generalized cross-validation (GCV), which optimizes a smoothness selection 
criterion, is the optimal value for the smoothing parameter. Minimizing the GCV function it 
facilitates the selection of smoothing parameters. The function employs the following formula: 

 
(16) 

where H of smoothing spline is , The B-spline is �*D* + EFK�3�*D, and penalized spline 
is _�_D_ + E`a�3�_D 

3. Results and discussion  

3.1 Simulation Study 

This section presents a Monte Carlo simulation conducted in R to estimate the response variable and 
evaluate the performance of Spline methods, including B-spline, smoothing spline, and penalized 
spline. Accordingly, the explanatory response variable in the time-series data exhibits periodic 
patterns and nonlinear features. Therefore, the periodic patterns observed in time series data are 
simulated by using the following function: 

  �b = c�b de.f2gh1 + c�bij + 
b  / = 1,2,3, . . , �  (17) 

where  denotes an error term that follows a normal distribution with a mean of zero and standard 
deviations 1,3, and 5, as demonstrated in Figures1-3. 

  

 
Figure 1. The Plot of Periodic Patterns of Time Series for Different Sample Sizes With l = 1 
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Figure 2. The Plot of Periodic Patterns of Time Series for Different Sample Sizes With l = 3 
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Figure 3. The Plot of Periodic Patterns of Time Series for Different Sample Sizes With l = 5 

Furthermore, the response variables with utilized of nonlinear shapes are simulated by using the 
following function: 

  �b = 2c�b .�� n2g o ����
�p���qr + 
b , / = 1,2, . . . . , � (18) 

where  denotes an error term that follows a normal distribution with a mean of zero and standard 
deviations 1,3, and 5, as demonstrated in Figures4-6. 

  

  

  

Figure 4. The Plot of Nonlinear Shapes of Time Series for Different Sample Sizes With l = 1 
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Figure 5. The Plot of Nonlinear Shapes of Time Series for Different Sample Sizes With l = 3 
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Figure 6. The Plot of Nonlinear Shapes of Time Series for Different Sample Sizes With l = 5 

3.2 Simulation Design  

This simulations study utilized five different sample sizes: n=100,150,200,250, and 300 with three 
different standard deviations values: l = 1,3,and 5.  Furthermore, the data generated were replicated 
1000 times for each sample sizes to determine the best spline nonparametric regression method was 
applied to predict time series data characterized by periodic patterns and nonlinear shapes in the 
response variable, with explanatory variable considered as sequential data. 

Therefore, the generalized cross-validation (GCV) is used to choose the optimal smoothing 
parameter estimation as well as the cross-validation method (CV), while the number of knots is 
controlled and specified using cross-validation procedures, which ensure the curve suitably fits the 
data points.  

3.3  Simulation Result  

Tables 1, 2, and 3 present the values of the Mean Average Absolute Error (MAAE) and the number 
of knot points for spline methods that were applied in the periodic patterns and nonlinear time series 
data for all sample sizes 100, 150, 200, 250, and 300 under different values of standard deviation of 
error as 1, 3, and 5. 

Table 1. The Values of Mean Average Absolute Error (MAAE) and the Mean of the Knot Point for Different 
Sample Sizes with l = 1 

n Methods 

Nonlinear Periodic patterns 

MAAE 
No. of 

knots 
MAAE 

No. of 

knots 

100 
B-Spline 0.623547 99 0.277846 99 
Penalized spline 0.256635 100 0.231000 100 
Smoothing Spline 0.325871 65 0.463913 65 

150 
B-Spline 0.836252 140 0.629568 140 
Penalized spline 0.478959 145 0.418975 145 
Smoothing Spline 0.562514 90 0.547623 90 

200 
B-Spline 0.992571 193 0.780542 193 
Penalized spline 0.505439 197 0.671000 197 
Smoothing Spline 0.987871 120 0.717160 121 

250 
B-Spline 1.094318 240 1.186803 240 
Penalized spline 0.820787 235 0.632654 235 
Smoothing Spline 0.976725 180 1.212508 180 

300 
B-Spline 1.720780 283 1.182154 283 
Penalized spline 0.948713 291 0.876321 291 
Smoothing Spline 1.070494 225 0.996325 225 
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Table 2. The Values of Mean Average Absolute Error (Maae) and the Mean of the Knot Points for Different 
Sample Sizes With l = 3 

n Methods 
Nonlinear Periodic patterns 

MAAE No. of knots MAAE No. of knots 

100 
B-Spline 0.743992 99 0.554278 99 
Penalized spline 0.474869 100 0.399641 100 
Smoothing Spline 0.599272 65 0.722549 65 

150 
B-Spline 0.508108 140 0.588418 140 
Penalized spline 0.456979 145 0.433687 145 
Smoothing Spline 0.642273 90 0.6774215 90 

200 
B-Spline 0.556112 193 1.02537778 193 
Penalized spline 0.495113 197 0.744865 197 
Smoothing Spline 0.936218 120 1.188651 121 

250 
B-Spline 1.093273 240 1.100456 240 
Penalized spline 0.507539 235 0.782214 235 
Smoothing Spline 0.898173 180 0.978214 180 

300 
B-Spline 1.451603 283 1.187922 283 
Penalized spline 0.675219 291 0.822169 291 
Smoothing Spline 0.906713 225 0.922314 225 

Table 3. The Values of Mean Average Absolute Error (MAAE) and the Mean of the Knot Points for Different 
Sample Sizes with l = 5 

n Methods 
Nonlinear Periodic patterns 

MAAE No. of knots MAAE No. of knots 

100 
B-Spline 0.854213 99 0.622154 99 
Penalized spline 0.317659 100 0.6188974 100 
Smoothing Spline 0.862231 65 0.9123541 65 

150 
B-Spline 1.022845 140 0.922514 140 
Penalized spline 0.725146 145 0.811236 145 
Smoothing Spline 0.933126 90 0.988745 90 

200 
B-Spline 0.900326 193 0.778965 193 
Penalized spline 0.890148 197 0.633145 197 
Smoothing Spline 0.978641 120 0.855263 121 

250 
B-Spline 0.455623 240 1.200354 240 
Penalized spline 0.811879 235 0.844567 235 
Smoothing Spline 1.003265 180 1.188976 180 

300 
B-Spline 1.233654 283 0.665532 283 
Penalized spline 0.974561 291 0.447158 291 
Smoothing Spline 1.122302 225 0.881135 225 

 

As shown in Tables 1, 2, and 3, the mean absolute error (MAAE) for the periodic data differs slightly 
from that for the nonlinear data. Therefore, the mean average absolute error (MAAE) for the 
smoothing spline method is higher than that of other methods, and there are fewer knots utilized. 
Furthermore, the increase in standard deviation corresponds to a rise in the mean absolute error 
(MAE), indicating an effect on the model's fitness. Despite the increase in sample size, parameter 
estimates remained consistent, indicating robustness to variations in sample size. Therefore, the 
penalized spline method consistently outperformed the other nonparametric regression models. 

3.4  Real Data Application 

Since the beginning, Iraqi oil exports have significantly contributed to the country's economy. This 
is because oil exports contribute to energy security, primary energy production, industrial usage, 
human development, and other areas of economic growth. The Iraqi economy is extremely dependent 
on oil exports. This study used a dataset of Iraq's oil exports, comprising 228 monthly records from 
January 2005 to December 2024. The dataset shows a nonlinear trend and periodic patterns with a 
component of seasons, as Figure 7 illustrates. 
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Figure 7. The Time Series Plot of Oil Export of Iraq 

The real data analysis employed three nonparametric approaches to determine the smoothing 
function for Iraq's oil exports. These were the smoothing spline, the B-spline, and the penalized 
spline. A sequence of 228 months refers to the explanatory variable, while the monthly oil export 
volume (Million barrels) serves as the response variable. The Mean Absolute Error (MAE) is a metric 
used to evaluate a model's precision, defined as the average of absolute differences between expected 
and actual values. The accuracy of the prediction is evaluated in percentage terms by the Mean 
Absolute Percentage Error (MAPE). MAAE and MAPE are used to assess forecasting and estimate 
precision. Therefore, the following are the equations used to calculate MAAE and MAPE: 

   !sst = �
��u ∑ |�� − �v�|��u�'� , � = 1,2, . . . . ,228  (19)  

 !sAt = �
��u ∑ x�y23yv2�

y2
x��ub'� × 100, / = 1,2,3, . . . ,228 (20) 

Moreover, the Mean Average Absolute Error (MAAE) and knot points are approximated from the 
spline methods as: smoothing spline, B-spline, and penalized spline as shown in Figure 8. 

 
Figure 8. The Fitted Nonparametric Regression Model of Iraq’s Oil Export 

The fitted nonparametric regression models of all methods, the smoothing spline, B-splines, and 
penalized spline, make it hard to pick the best method, as shown in the figure above. The 
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outperforming method is then investigated using mean average absolute error (MAAE). Therefore, 
Table 4 presents the MAAE values and the number of knot points. 

Table 4. The MAAE Values and Knot Points for Estimating the Nonparametric Regression Spline 

B-spline Penalized spline Smoothing spline 
Knots MAAE Knots MAAE Knots MAAE 
205 16893.221 220 15487.221 185 19845.554 

The results in the table above indicate that the best knot points and the mean absolute error (MAE) 
for nonparametric smoothing methods are achieved by B-spline, smoothing spline, and penalized 
spline. The penalized spline method yields the most accurate estimates for this dataset, as it has the 
lowest mean absolute error (MAE). 

Furthermore, the estimate is followed by the use of these nonparametric regression models to forecast 
values for the next 12 months. The MAPE is then calculated to evaluate accuracy over the specified 
period. All methods are shown in Table 5, which includes the actual data, expected values, and the 
MAPE. 

Table 5. The Amount of Oil Export Per Month, Forecasting Values for 12 Months, and MAPE. 

Months Oil export per month B-spline Smoothing spline Penalized spline 

January 3365123.78 3164123.18 3154122.20 3465140.08 
February 3275148.65 3163120.05 3155110.85 3385048.75 
March 3250698.22 3150597.32 3140580.25 3360799.22 
April 3350862.98 3150761.99 3147675.88 3460963.18 
May 3150963.11 3050883.23 3040873.20 3260973.10 
June 3450899.88 3440889.45 3439779.95 3480998.95 
July 3516981.85 3514861.80 3513850.70 3618991.99 
August 3475187.66 3455170.55 3450175.99 3495199.86 
September 3514189.47 3513186.35 3512155.05 3519396.97 
October 3315264.87 3313340.60 3312541.75 3418274.99 
November 3400145.96 3400125.75 3400120.50 3500199.86 
December 3375487.33 3365477.20 3335455.25 3498697.93 
January 3250142.27 3240130.15 3241125.23 3390182.87 
 MAPE 11.4897 9.8865 5.7996 

Based on the table above, the most suitable method for estimating the actual data is penalized spline 
nonparametric regression. It outperformed the other techniques in predicting future values, achieving 
the lowest mean absolute percentage error (MAPE) of 5.7996. This indicates that the penalized spline 
method achieves high accuracy in future predictions. Additionally, the B-spline method 
outperformed the smoothing spline in prediction accuracy, with an MAPE of 9.8865. 

Therefore, Figure 9 compares three non-parametric regression methods—B-splines, smoothing 
splines, and penalized splines—for modelling Iraq's oil exports over 12 months. Both B-splines and 
smoothing splines closely follow the data points, whereas the penalized spline also performs well but 
yields a smoother curve. Notably, the smoothing spline exhibits greater variation and deviates from 
the other methods, especially around months 10 and 11. Overall, B-splines and penalized splines 
demonstrate the best fit for accurately forecasting oil exports. 
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Figure 9. Plot of Actual Data and Predictions Over 12 Future Months 

As shown in Table 6, the three non-parametric regression techniques require more knots to predict 
future data than to fit the actual datasets. Nevertheless, finding the best knots may not always be a 
significant undertaking, and increasing the number of knots does not necessarily indicate the best 
method. Based on this study, smoothing splines and B-splines use the same knot approach as [29]; 
however, penalized splines are better at predicting future values. The relationship between the 
explanatory variables and the response variables may vary at particular points in the space of the 
explanatory variables, referred to as knots. They are frequently employed in spline-based 
nonparametric regression methods, such as cubic splines and piecewise linear regression, thereby 
enhancing model flexibility and accuracy. 

Table 6. The Mean Average Absolute Error (MAAE), Mean Absolute Percentage Error (MAPE), and The 
Number of Knot Points for Iraq’s Oil Export 

Knot 
B-spline Smoothing spline Penalized spline 

MAAE MAPE MAAE MAPE MAAE MAPE 

50 75,8545.1 35.986 95,4658.1 30.963 60,8865.2 30.554 
100 60,3567.4 33.265 90,4625.7 27.125 53,4469.5 26.145 
150 57,1548.6 33.154 88,9875.2 22.189 47,4458.1 21.112 
200 55,5241.9 32.758 88,6532.1 17.332 41,8874.2 15.789 

4. Conclusion 

 This study is significant because it compares popular nonparametric regression methods on 
simulated and real-world data, including smoothing splines, B-splines, and penalized splines. 
Standard deviations and sample sizes are used to simulate periodic patterns and nonlinear forms. In 
addition, using a real dataset, such as Iraq's oil exports, yielded fitted model results that were similar 
to those derived from the simulated data. As noted, penalized splines perform well for predicting 
future values. Although these are advantages, nonparametric regression also entails difficulties, 
including the risk of overfitting, the need for larger sample sizes, and greater analytical complexity. 
Future studies should investigate other nonparametric regression methods, such as kernel smoothing 
or local polynomial regression, and increase the number of knots to improve model accuracy. It 
would be possible to test these methods on datasets of varying complexity. To conduct a 
comprehensive assessment of forecasting accuracy, it will also be necessary to consider the 
computational efficiency of larger datasets and to use alternative error metrics, such as root mean 
square error (RMSE) or mean absolute error (MAE). 
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