DOI: https://doi.org/10.18517/ijods.1.2.82-98.2020
Application and Optimization of MIMO Communication in Wide Area Monitoring Systems
Abstract
Multiple-Input Multiple-Output (MIMO) technology uses a multitude of antennas at both transmitter and receiver to transfer a larger data mount simultaneously. It is the key technology in the 4th and 5th communication system generations. In this work, the use of MIMO technology to enhance the data transfer in terms of completeness, correctness and latency in Wide Area Monitoring Systems (WAMS) is envisaged. To further enhance the system, optimization is done to design the communication system in terms of physical layout. A comparison with the state of art technologies is done to highlight how the adoption of the MIMO technology would enhance the data transfer within the smart grid.
Article Details
References
Miao, L.; Wei, G.; Fang, X.; Risheng, J. The strategy of the voltage control in smart grid based on modern control method and FPGA. Proceedings of 34th Chinese Control Conference (CCC), 2015, 8964–8968.
Gellings, C. W. The concept of demand-side management for electric utilities. Proceedings of IEEE, 1985, 73(10), 1468–1470.
Tsai, C.W.; Pelov, A.; Chiang, M.C.; Yang, C.-S.; Hong, T.P. Computational awareness for smart grid: a review. Int. J. Mach. Learn. Cybern. 2014, 5(1),151–163.
Farhangi, H. The path of the smart grid. IEEE Power Energy Mag. 2010,8(1),18–28.
Park, N.; Kim, M. Implementation of load management application system using smart grid privacy policy in energy management service environment. Clust. Comput. 2014,17(3), 653–664.
Recioui, A.; Bentarzi, H.; Tsebia, M. PMU Deployment in Power System Oscillation Monitoring. In Sustainable aviation 2014, 312: 322.
Momoh, J. Smart Grid:Fundamentals of Design and Analysis. 2012.
C37.118-2005, IEEE Standard for Synchrophasors for Power Systems, 2006.
Dolezilek, D.; Fischer, N.; Schloss, R. Improvements in Synchronous Wide-Area Data Acquisition Design and Deployment for TelecontrolandTeleprotection, 2012.
Yan, Y.; Qian, Y.; Sharif H.; Tipper, D. A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and Challenges. IEEE Communications Surveys & Tutorials 2013,15(1), 5 – 20. DOI: 10.1109/SURV.2012.021312.00034.
Wang, W.; Xu, Y.; Khanna, M. A survey on the communication architectures in smart grid. Comput. Netw 2011, 55, 3604–3629.
Khan, R.H.; Khan, J.Y. A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Comput. Netw 2013, 57, 825–845.
Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies: communication technologies and standards. IEEE Trans. Indu. Inform. 2011, 7 (4), 529–539.
Fan, Z.; Kulkarni, P.; Gormus, S.; Efthymiou, C.; Kalogridis, G.; Sooriyabandara, M.; Zhu, Z.; Lambotharan, S.; Chin, W. Smart grid communications: overview of research challenges, solutions, and standardization activities. IEEE Commun. Surv. Tutorials 2012, 99, 1–8.
S. Galli, A. Scaglione, Z. Wang, Power line communications and the smart grid, in: IEEE International Conference Smart Grid Communications (SmartGridComm), 2010, pp. 303–308.
Pipattanasomporn, M.; Kuzlu, M.; Rahman, S. Demand response implementation in a home area network: a conceptual hardware architecture, In IEEE Innovative Smart Grid Technologies (ISGT) Conference, 2012, 1–8.
Wietfeld, C.; Georg, H.; Groening, S.; Lewandowski, C.; Mueller, C.; Schmutzler, J. Wireless M2M communication networks for smart grid applications. In Sustainable Wireless Technologies (European Wireless), 2011, 1–7.
Aravinthan, V.; Karimi, B.; Namboodiri, V.; Jewell, W. Wireless communication for smart grid applications at distribution level -feasibility and requirements. In IEEE Power and Energy Society General Meeting 2011, 1–8.
Dong, Y.; Kezunovic, M. Communication infrastructure for emerging transmission-level smart grid applications. In IEEE Power and Energy Society General Meeting 2011, 1–7.
Jianfeng, L.; Defu, J.; Xiaofei, Z. DOA Estimation Based on Combined Unitary ESPRIT for Coprime MIMO Radar. IEEE Communications Letters 2017,21(1), 96-99.
Said, M.M.; Yahia, M.M.A. On cross correlation in antenna arrays with applications to spatial diversity and MIMO systems. IEEE Transactions on Antennas and Propagation 2015, 63(4), 1798 – 1810.
Sebastien, C.; Said, M.M.; Yahia, M.M.A. A generalized methodology for obtaining antenna array surface current distributions with optimum cross-correlation performance for MIMO and spatial diversity applications. IEEE Antennas and Wireless Propagation Letters 2015,14, 1451 – 1454.
Wojciech, J. K. Space diversity parameters of MIMO systems small antenna array for mobile terminal. In Proc. European Conference on Antennas and Propagation, Davos, Switzerland 2016, 1-4.
Foschini, G. J.; Gans, M. J. On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas. Wireless Personal Communications 1998, 6(3), 311-335.
Recioui, A.; Bentarzi, H. Genetic Algorithm based MIMO capacity enhancement in spatially correlated channels including Mutual Coupling. Wireless Personal communications 2012, 63(3), 689-701.
Recioui, A.; Bentarzi, H. Capacity Optimization of MIMO Wireless Communication Systems Using a Hybrid Genetic-Taguchi Algorithm. Wireless Personal Communications 2013, 71(2), 1003-1019.
Recioui, A.; Bentarzi, H. Application of a Galaxy-Based Search Algorithm to MIMO System Capacity Optimization. Arabian Journal for Science and Engineering 2016, 41(9), 3407-3414.
Yuan, Q.; Chen, Q.; Sawaya, K. Performance of adaptive array antenna with arbitrary geometry in the presence of mutual coupling. IEEE Trans. Antennas Propag. 2006, 54(7), 1991-1996.
Wang, B; Chang, Y.; Sun, Y. Performance of the large-scale adaptive array antennas in the presence of mutual coupling. IEEE Trans. Antennas Propag. 2016, 64(6), 2236-2245.
Wu, Y.; Bergmans, J. W. M.; Attallah, S. Effects of antenna correlation and mutual coupling on the carrier frequency offset estimation in MIMO systems. In Int. Conf. Wireless Commun. Netw. Mobile Computing (WiCOM), Chengdu, China, 23-25 Sept. 2010.
Lu, S. ; Hui, H. T. ;Bialkowski, M. E. et al. The effect of antenna mutual coupling on channel estimation of MIMO-OFDM systems. IEEE Antennas Propag. Society. In Int. Symp., Honolulu, HI, Jun. 2007, 1-4.
Lui, H. S.; Hui, H. T. Mutual coupling compensation for direction-of-arrival estimations using the receiving-mutual impedance method. Int. J. Antennas Propag. 2010, 1-7.
Pozar, D. M. A relation between the active input impedance and the active element pattern of a phased array. IEEE Trans. Antennas Propag. 2003, 51(9), 2486-2489.
Aumann, H. M.;Fenn, A. J.;Willwerth, F. G. Phased array antenna calibration and pattern prediction using mutual coupling measurements. IEEE Trans. Antennas Propag. 1989, 37(7), 844–850.
Wei, H.; Wang, D.; Zhu, H. et al. Mutual coupling calibration for multiuser massive MIMO systems. IEEE Trans.WirelessCommun. 2016,15(1), 606–619.
Recioui, A.; Azrar, A. Use of Genetic Algorithms in Linear and Planar Antenna. Microwave And Optical Technology Letters 2007, 49(7).
Recioui, A.; Azrar, A.; Bentarzi, H., Dehmas, M.; Challal, M. Synthesis of Linear Arrays with SidelobeLevel Reduction Constraint using Genetic Algorithms. International journal of microwave and optical technology 2008, 3(5).
Khodier, M. M.; Christodoulou, C. G. Linear array geometry synthesis with minimum side lobe level and null control using particle swarm optimization. IEEE Trans. on Antennas Propagat. 2005, 53(8), 2674-2679.
Recioui, A. Sidelobe Level Reduction in Linear Array Pattern Synthesis Using Particle Swarm Optimization. J. of Optimization Theory and Applications 2012, 153(2), 497–512. DOI 10.1007/s10957-011-9953-9.
Dib, N.; Goudos, S.; Muhsen, H. Application of taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays. PIER 2010, 102, 159-180.
Recioui, A. Optimization of Antenna Arrays Using Different Strategies Based on Taguchi Method. Arabian Journal for Science and Engineering 2014, 39(2), 935-944.
Durrani, S.; Bialkowski, M. E. Effect of mutual coupling on the interference rejection capabilities of linear and circular arrays in CDMA systems. IEEE Trans. Antennas Propagat. 2004,52(4),1130– 1134.
Piazza, D.; Kirsch, N. J.; Forenza, A.; Heath, R. W.; Dandekar, K. R. Design and evaluation of a reconfigurable antenna array for MIMO systems. IEEE trans. Anten. Propag. 2008, 56(3).
Lozano, A.; Tulino, A. M. Capacity of multipletransmit multiple receive antenna architectures. IEEE Trans. Inf. Theory 2002,48(12), 3117–3127.
Oyman, O.; Nabar, R. U.; Bolcskei, H.; Paulraj, A. J. Tight lower bounds on the ergodic capacity of Rayleigh fading MIMO channels. In Proc. GLOBECOM, Taipei, Taiwan, R.O.C., Nov. 2002, 1172–1176.
Du, J.; Li, Y. Optimization of antenna configuration for MIMO systems. IEEE transactions on Communications 2005,53(9), 1451–1454.
Mirjalili, S.; Lewis, A. The whale optimization algorithm. Advances in Engineering Software 2016, 95, 51-67.
Kaur, G.; Arora, S. Chaotic whale optimization algorithm. Journal of Computational Design and Engineering 2017.
Ling, Y.; Zhou, Y.; Luo, Q. Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 2017, 5, 6168–6186.
Sun, Y.; Wang, X.; Chen, Y.; Liu, Z. A modified whale optimization algorithm for large-scale global optimization problems. Expert Systems with Applications 2018, 114, 563–577.
Bentouati, B. ; Chaib, L. ;Chettih, S. A hybrid whale algorithm and pattern search technique foroptimalpower flow problem. In 2016 8th International Conference on Modelling, Identification and Control (ICMIC), Algiers, 1048–1053.
Findler, N. S. V.; Lo, C.; Lo, R. Pattern search for optimization. Mathematics and Computers in Simulation1987, 29(1), 41–50.
Mafarja, M. M.;Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 2017, 1–11.
Aljarah, I.; Faris, H.; Mirjalili, S. Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Computing 2018, 22(1).
Aziz, M. A. E.; Ewees, A. A. ; Ella, A. Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Systems with Applications 2017, 83, 242–256.
Ben oualidMedani, K.; Sayah, S.;Bekrar, A. Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system. Electric Power Systems Research 2018, 163, 696–705.
Yu, Y. ; Wang, H. ; Li, N. ; Su, Z. ; Wu, J. Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer. Aerospace Science and Technology 2017, 69, 149–160.
Wu, J.; Wang, H.; Li, N.; Yao, P.; Huang, Y.; Yang, H. Path planning for solar-powered UAV in urban environment. Neurocomputing 2018, 275, 2055–2065.
Mirjalili S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. AdvEngSoftw. 2014, 69, 46–61.
Watkins, W.A.; Schevill, W.E. Aerial observation of feeding behavior in four baleen whales: Eubalaenaglacialis, Balaenoptera borealis, Megapteranovaean-gliae, and Balaenopteraphysalus. J Mammal 1979,155–63.
Recioui, A. Use of Spiral Optimization Technique to Enhance the Capacity of MIMO Communication Systems Employing One and Two-Dimensional Array Antennas. In International conference on applied analysis and mathematical modelling, Yildiz Technical university, Istanbul, Turkey, June 8-12, 2015.
A. Phadke and R. de Moraes. The Wide World of Wide-area Measurement. Power and Energy Magazine, IEEE,6(5):52–65, Sep-Oct 2008. ISSN 1540-7977. doi: 10.1109/MPE.2008.927476.
V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, G.P. Hancke, Smart grid technologies: communication technologies and standards, IEEE Trans. Indu. Inform. 7 (4) (2011) 529–539.