Parameters and Knot Points Estimation for Spline Methods Applied in Time Series Data
How to cite (IJASEIT) :
The purpose of this study is to investigate and compare several nonparametric regression approaches, including penalized spline methods, B-splines, and smoothing splines. Applying these techniques to simulated and real datasets, such as Iraqi oil export data, focuses on parameter estimation and identifying optimal knot points for predicting periodic and nonlinear trends. The knot points are selected using generalized cross-validation (GCV) to ensure an accurate fit to the data. For time-series data with nonlinearities and periodic patterns in the response variable, this research employs nonparametric regression with sequential explanatory variables. We research simulated data that exhibit periodic patterns similar to economic cycles, as well as nonlinear data that employs complex equations to model interactions among variables. Simulations were conducted across a range of standard deviations and sample sizes. The efficiency of parameter estimation in these synthetic datasets was quantified using the mean absolute average error (MAME). For the empirical application, the parameters of the nonparametric regression models were estimated using monthly Iraqi oil export data, with the MAME employed as the evaluation metric. The effectiveness of these techniques is further evaluated in forecasting future values by calculating the mean absolute percentage error (MAPE). Among the approaches, the penalized spline consistently achieves the lowest average mean squared error across all standard deviation levels and sample sizes in the simulated data, while also demonstrating robust forecasting performance. In contrast, the smoothing spline outperforms the other methods in terms of parameter estimation accuracy.
A. M. Sadek and L. M. Ali, "Developing a mixed nonparametric regression modeling (simulation study)," J. Theor. Appl. Inf. Technol., vol. 101, no. 21, pp. 6988–7000, 2023.
H. M. Khalaf and A. S. A. Sulaiman, "New method for finding the weight distribution and spectrum by testing the optimal solution of the points in PG(3,2)," J. Theor. Appl. Inf. Technol., vol. 102, no. 9, pp. 3725–3729, 2024.
M. Salibian-Barrera, "Robust nonparametric regression: Review and practical considerations," Econom. Stat., vol. 31, pp. 363–379, Jan. 2024, doi: 10.1016/j.ecosta.2023.04.004.
S. Amodio, M. Aria, and A. D'Ambrosio, "On concavity in nonlinear and nonparametric regression models," Statistica, vol. 74, no. 1, pp. 85–98, 2014.
A. M. Sadek and L. A. Mohammed, "Evaluation of the performance of kernel non-parametric regression and ordinary least squares regression," JOIV: Int. J. Inform. Vis., vol. 8, no. 3, pp. 1352–1359, Sep. 2024, doi:10.62527/joiv.8.3.2430.
R. L. Eubank, Nonparametric Regression and Spline Smoothing, 2nd ed. Boca Raton, FL, USA: CRC Press, 1999. doi: 10.1201/9781482273144.
W. Härdle, Applied Nonparametric Regression. Cambridge, U.K.: Cambridge Univ. Press, 1990. doi:10.1017/CCOL0521382483.
B. Chen and Y. Hong, "Testing for smooth structural changes in time series models via nonparametric regression," Econometrica, vol. 80, no. 3, pp. 1157–1183, May 2012, doi: 10.3982/ECTA7990.
J. Kloke and J. McKean, Nonparametric Statistical Methods Using R. Boca Raton, FL, USA: Chapman and Hall/CRC, 2024. doi: 10.1201/9781003039617.
M. El-Morshedy, M. S. Eliwa, and E. Altun, "Discrete Burr-Hatke distribution with properties, estimation methods and regression model," IEEE Access, vol. 8, pp. 74359–74370, 2020, doi: 10.1109/ACCESS.2020.2988431.
Y. Gai, X. Zhu, and J. Zhang, "Testing symmetry of model errors for nonparametric regression models by using correlation coefficient," Commun. Stat. Simul. Comput., vol. 51, no. 4, pp. 1436–1453, 2022, doi:10.1080/03610918.2019.1670844.
P. Čížek and S. Sadıkoğlu, "Robust nonparametric regression: A review," Wiley Interdiscip. Rev. Comput. Stat., vol. 12, no. 3, p. e1492, May 2020, doi: 10.1002/wics.1492.
S. Demir and Ö. Toktamiş, "On the adaptive Nadaraya-Watson kernel regression estimators," Hacet. J. Math. Stat., vol. 39, no. 3, pp. 429–437, 2010.
Z. Shang and G. Cheng, "Computational limits of a distributed algorithm for smoothing spline," J. Mach. Learn. Res., vol. 18, no. 1, pp. 3809–3845, 2017.
P. Feng and J. Qian, "Forecasting the yield curve using a dynamic natural cubic spline model," Econ. Lett., vol. 168, pp. 73–76, Jul. 2018, doi: 10.1016/j.econlet.2018.04.009.
D. Van Than and T. Tjahjowidodo, "A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting," PLoS ONE, vol. 12, no. 3, p. e0173857, Mar. 2017, doi:10.1371/journal.pone.0173857.
L. Xiao, "Asymptotic theory of penalized splines," Electron. J. Stat., vol. 13, no. 1, pp. 747–794, 2019, doi:10.1214/19-EJS1541.
D. Ruppert, "Nonparametric regression and spline smoothing," J. Amer. Stat. Assoc., vol. 96, no. 456, pp. 1387–1388, Dec. 2001, doi: 10.1198/016214501753382417.
A. Perperoglou, W. Sauerbrei, M. Abrahamowicz, and M. Schmid, "A review of spline function procedures in R," BMC Med. Res. Methodol., vol. 19, no. 1, p. 46, Mar. 2019, doi: 10.1186/s12874-019-0666-3.
L. C. Marsh and D. R. Cormier, Spline Regression Models. Thousand Oaks, CA, USA: SAGE Publications, 2001. doi: 10.4135/9781412985901.
S. N. Wood, Generalized Additive Models: An Introduction with R, 2nd ed. Boca Raton, FL, USA: Chapman and Hall/CRC, 2017. doi: 10.1201/9781315370279.
T. Lyche, C. Manni, and H. Speleers, "Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement," in Splines and PDEs: From Approximation Theory to Numerical Linear Algebra, M. Bozzini, T. Lyche, and G. Monegato, Eds. Cham, Switzerland: Springer, 2018, pp. 1–76. doi: 10.1007/978-3-319-94911-6_1.
X. Liu, X. Wang, Z. Wu, D. Zhang, and X. Liu, "Extending Ball B-spline by B-spline," Comput. Aided Geom. Des., vol. 82, p. 101926, Sep. 2020, doi: 10.1016/j.cagd.2020.101926.
Y. Wang, Smoothing Splines: Methods and Applications. Boca Raton, FL, USA: CRC Press, 2011. doi:10.1201/b10954.
C. Ke and Y. Wang, "Smoothing spline nonlinear nonparametric regression models," J. Amer. Stat. Assoc., vol. 99, no. 468, pp. 1166–1175, Dec. 2004, doi: 10.1198/016214504000000755.
G. Kauermann, "A note on smoothing parameter selection for penalized spline smoothing," J. Stat. Plan. Inference, vol. 127, no. 1-2, pp. 53–69, Jan. 2005, doi: 10.1016/j.jspi.2003.09.023.
G. Wahba, Spline Models for Observational Data. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics (SIAM), 1990. doi: 10.1137/1.9781611970128.
P. Craven and G. Wahba, "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation," Numer. Math., vol. 31, no. 4, pp. 377–403, Dec. 1978, doi:10.1007/BF01404567.
A. Wytyczak-Partyka, "Organ surface reconstruction using B-splines and Hu moments," Acta Polytech. Hung., vol. 11, no. 10, pp. 163–179, 2014. doi: 10.12700/APH.11.10.2014.10.9.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Attribution-ShareAlike 4.0 International License
https://creativecommons.org/licenses/by-sa/4.0/